python

超轻量级php框架startmvc

Tensorflow之构建自己的图片数据集TFrecords的方法

更新时间:2020-05-21 07:00:01 作者:startmvc
学习谷歌的深度学习终于有点眉目了,给大家分享我的Tensorflow学习历程。tensorflow的官方中

学习谷歌的深度学习终于有点眉目了,给大家分享我的Tensorflow学习历程。

tensorflow的官方中文文档比较生涩,数据集一直采用的MNIST二进制数据集。并没有过多讲述怎么构建自己的图片数据集tfrecords。

流程是:制作数据集—读取数据集—-加入队列

先贴完整的代码:


#encoding=utf-8
import os
import tensorflow as tf
from PIL import Image

cwd = os.getcwd()

classes = {'test','test1','test2'}
#制作二进制数据
def create_record():
 writer = tf.python_io.TFRecordWriter("train.tfrecords")
 for index, name in enumerate(classes):
 class_path = cwd +"/"+ name+"/"
 for img_name in os.listdir(class_path):
 img_path = class_path + img_name
 img = Image.open(img_path)
 img = img.resize((64, 64))
 img_raw = img.tobytes() #将图片转化为原生bytes
 print index,img_raw
 example = tf.train.Example(
 features=tf.train.Features(feature={
 "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
 }))
 writer.write(example.SerializeToString())
 writer.close()

data = create_record()

#读取二进制数据
def read_and_decode(filename):
 # 创建文件队列,不限读取的数量
 filename_queue = tf.train.string_input_producer([filename])
 # create a reader from file queue
 reader = tf.TFRecordReader()
 # reader从文件队列中读入一个序列化的样本
 _, serialized_example = reader.read(filename_queue)
 # get feature from serialized example
 # 解析符号化的样本
 features = tf.parse_single_example(
 serialized_example,
 features={
 'label': tf.FixedLenFeature([], tf.int64),
 'img_raw': tf.FixedLenFeature([], tf.string)
 }
 )
 label = features['label']
 img = features['img_raw']
 img = tf.decode_raw(img, tf.uint8)
 img = tf.reshape(img, [64, 64, 3])
 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
 label = tf.cast(label, tf.int32)
 return img, label

if __name__ == '__main__':
 if 0:
 data = create_record("train.tfrecords")
 else:
 img, label = read_and_decode("train.tfrecords")
 print "tengxing",img,label
 #使用shuffle_batch可以随机打乱输入 next_batch挨着往下取
 # shuffle_batch才能实现[img,label]的同步,也即特征和label的同步,不然可能输入的特征和label不匹配
 # 比如只有这样使用,才能使img和label一一对应,每次提取一个image和对应的label
 # shuffle_batch返回的值就是RandomShuffleQueue.dequeue_many()的结果
 # Shuffle_batch构建了一个RandomShuffleQueue,并不断地把单个的[img,label],送入队列中
 img_batch, label_batch = tf.train.shuffle_batch([img, label],
 batch_size=4, capacity=2000,
 min_after_dequeue=1000)

 # 初始化所有的op
 init = tf.initialize_all_variables()

 with tf.Session() as sess:
 sess.run(init)
 # 启动队列
 threads = tf.train.start_queue_runners(sess=sess)
 for i in range(5):
 print img_batch.shape,label_batch
 val, l = sess.run([img_batch, label_batch])
 # l = to_categorical(l, 12)
 print(val.shape, l)

制作数据集


#制作二进制数据
def create_record():
 cwd = os.getcwd()
 classes = {'1','2','3'}
 writer = tf.python_io.TFRecordWriter("train.tfrecords")
 for index, name in enumerate(classes):
 class_path = cwd +"/"+ name+"/"
 for img_name in os.listdir(class_path):
 img_path = class_path + img_name
 img = Image.open(img_path)
 img = img.resize((28, 28))
 img_raw = img.tobytes() #将图片转化为原生bytes
 #print index,img_raw
 example = tf.train.Example(
 features=tf.train.Features(
 feature={
 "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
 }
 )
 )
 writer.write(example.SerializeToString())
 writer.close()

TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。

读取数据集


#读取二进制数据
def read_and_decode(filename):
 # 创建文件队列,不限读取的数量
 filename_queue = tf.train.string_input_producer([filename])
 # create a reader from file queue
 reader = tf.TFRecordReader()
 # reader从文件队列中读入一个序列化的样本
 _, serialized_example = reader.read(filename_queue)
 # get feature from serialized example
 # 解析符号化的样本
 features = tf.parse_single_example(
 serialized_example,
 features={
 'label': tf.FixedLenFeature([], tf.int64),
 'img_raw': tf.FixedLenFeature([], tf.string)
 }
 )
 label = features['label']
 img = features['img_raw']
 img = tf.decode_raw(img, tf.uint8)
 img = tf.reshape(img, [64, 64, 3])
 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
 label = tf.cast(label, tf.int32)
 return img, label

一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List

加入队列


with tf.Session() as sess:
 sess.run(init)
 # 启动队列
 threads = tf.train.start_queue_runners(sess=sess)
 for i in range(5):
 print img_batch.shape,label_batch
 val, l = sess.run([img_batch, label_batch])
 # l = to_categorical(l, 12)
 print(val.shape, l)

这样就可以的到和tensorflow官方的二进制数据集了,

注意:

  1. 启动队列那条code不要忘记,不然卡死
  2. 使用的时候记得使用val和l,不然会报类型错误:TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, or numpy ndarrays.
  3. 算交叉熵时候:cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits,labels)算交叉熵
  4. 最后评估的时候用tf.nn.in_top_k(logits,labels,1)选logits最大的数的索引和label比较
  5. cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))算交叉熵,所以label必须转成one-hot向量

实例2:将图片文件夹下的图片转存tfrecords的数据集。


############################################################################################ 
#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
#Author : zhaoqinghui 
#Date : 2016.5.10 
#Function: image convert to tfrecords 
############################################################################################# 
 
import tensorflow as tf 
import numpy as np 
import cv2 
import os 
import os.path 
from PIL import Image 
 
#参数设置 
############################################################################################### 
train_file = 'train.txt' #训练图片 
name='train' #生成train.tfrecords 
output_directory='./tfrecords' 
resize_height=32 #存储图片高度 
resize_width=32 #存储图片宽度 
############################################################################################### 
def _int64_feature(value): 
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) 
 
def _bytes_feature(value): 
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 
 
def load_file(examples_list_file): 
 lines = np.genfromtxt(examples_list_file, delimiter=" ", dtype=[('col1', 'S120'), ('col2', 'i8')]) 
 examples = [] 
 labels = [] 
 for example, label in lines: 
 examples.append(example) 
 labels.append(label) 
 return np.asarray(examples), np.asarray(labels), len(lines) 
 
def extract_image(filename, resize_height, resize_width): 
 image = cv2.imread(filename) 
 image = cv2.resize(image, (resize_height, resize_width)) 
 b,g,r = cv2.split(image) 
 rgb_image = cv2.merge([r,g,b]) 
 return rgb_image 
 
def transform2tfrecord(train_file, name, output_directory, resize_height, resize_width): 
 if not os.path.exists(output_directory) or os.path.isfile(output_directory): 
 os.makedirs(output_directory) 
 _examples, _labels, examples_num = load_file(train_file) 
 filename = output_directory + "/" + name + '.tfrecords' 
 writer = tf.python_io.TFRecordWriter(filename) 
 for i, [example, label] in enumerate(zip(_examples, _labels)): 
 print('No.%d' % (i)) 
 image = extract_image(example, resize_height, resize_width) 
 print('shape: %d, %d, %d, label: %d' % (image.shape[0], image.shape[1], image.shape[2], label)) 
 image_raw = image.tostring() 
 example = tf.train.Example(features=tf.train.Features(feature={ 
 'image_raw': _bytes_feature(image_raw), 
 'height': _int64_feature(image.shape[0]), 
 'width': _int64_feature(image.shape[1]), 
 'depth': _int64_feature(image.shape[2]), 
 'label': _int64_feature(label) 
 })) 
 writer.write(example.SerializeToString()) 
 writer.close() 
 
def disp_tfrecords(tfrecord_list_file): 
 filename_queue = tf.train.string_input_producer([tfrecord_list_file]) 
 reader = tf.TFRecordReader() 
 _, serialized_example = reader.read(filename_queue) 
 features = tf.parse_single_example( 
 serialized_example, 
 features={ 
 'image_raw': tf.FixedLenFeature([], tf.string), 
 'height': tf.FixedLenFeature([], tf.int64), 
 'width': tf.FixedLenFeature([], tf.int64), 
 'depth': tf.FixedLenFeature([], tf.int64), 
 'label': tf.FixedLenFeature([], tf.int64) 
 } 
 ) 
 image = tf.decode_raw(features['image_raw'], tf.uint8) 
 #print(repr(image)) 
 height = features['height'] 
 width = features['width'] 
 depth = features['depth'] 
 label = tf.cast(features['label'], tf.int32) 
 init_op = tf.initialize_all_variables() 
 resultImg=[] 
 resultLabel=[] 
 with tf.Session() as sess: 
 sess.run(init_op) 
 coord = tf.train.Coordinator() 
 threads = tf.train.start_queue_runners(sess=sess, coord=coord) 
 for i in range(21): 
 image_eval = image.eval() 
 resultLabel.append(label.eval()) 
 image_eval_reshape = image_eval.reshape([height.eval(), width.eval(), depth.eval()]) 
 resultImg.append(image_eval_reshape) 
 pilimg = Image.fromarray(np.asarray(image_eval_reshape)) 
 pilimg.show() 
 coord.request_stop() 
 coord.join(threads) 
 sess.close() 
 return resultImg,resultLabel 
 
def read_tfrecord(filename_queuetemp): 
 filename_queue = tf.train.string_input_producer([filename_queuetemp]) 
 reader = tf.TFRecordReader() 
 _, serialized_example = reader.read(filename_queue) 
 features = tf.parse_single_example( 
 serialized_example, 
 features={ 
 'image_raw': tf.FixedLenFeature([], tf.string), 
 'width': tf.FixedLenFeature([], tf.int64), 
 'depth': tf.FixedLenFeature([], tf.int64), 
 'label': tf.FixedLenFeature([], tf.int64) 
 } 
 ) 
 image = tf.decode_raw(features['image_raw'], tf.uint8) 
 # image 
 tf.reshape(image, [256, 256, 3]) 
 # normalize 
 image = tf.cast(image, tf.float32) * (1. /255) - 0.5 
 # label 
 label = tf.cast(features['label'], tf.int32) 
 return image, label 
 
def test(): 
 transform2tfrecord(train_file, name , output_directory, resize_height, resize_width) #转化函数 
 img,label=disp_tfrecords(output_directory+'/'+name+'.tfrecords') #显示函数 
 img,label=read_tfrecord(output_directory+'/'+name+'.tfrecords') #读取函数 
 print label 
 
if __name__ == '__main__': 
 test() 

这样就可以得到自己专属的数据集.tfrecords了  ,它可以直接用于tensorflow的数据集。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

tensorflow 数据集 tensorflow tfrecords tensorflow构建数据集