1.场景,对于colums都相同的dataframe做过滤的时候例如:df1=DataFrame([['a',10,'男'],['b',11,'男'],['c'
1.场景,对于colums都相同的dataframe做过滤的时候
例如:
df1 = DataFrame([['a', 10, '男'],
['b', 11, '男'],
['c', 11, '女'],
['a', 10, '女'],
['c', 11, '男']],
columns=['name', 'age', 'sex'])
df2 = DataFrame([['a', 10, '男'],
['b', 11, '女']],
columns=['name', 'age', 'sex'])
取交集:print(pd.merge(df1,df2,on=['name', 'age', 'sex']))
取并集:print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))
取差集(从df1中过滤df1在df2中存在的行):
df1 = df1.append(df2)
df1 = df1.append(df2)
df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False)
print(df1)
代码:
# -*- coding:utf-8 -*-
__version__ = '1.0.0.0'
"""
@brief : 简介
@details: 详细信息
@author : zhphuang
@date : 2018-10-29
"""
import pandas as pd
from pandas import *
df1 = DataFrame([['a', 10, '男'],
['b', 11, '男'],
['c', 11, '女'],
['a', 10, '女'],
['c', 11, '男']],
columns=['name', 'age', 'sex'])
print("df1:\n%s\n\n" % df1)
df2 = DataFrame([['a', 10, '男'],
['b', 11, '女']],
columns=['name', 'age', 'sex'])
print("df2:\n%s\n\n" % df2)
# 取交集
print("交集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex']))
# 取并集
print("并集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))
# 从df1中过滤df1在df2中存在的行,也就是取补集
df1 = df1.append(df2)
df1 = df1.append(df2)
print("补集(从df1中过滤df1在df2中存在的行):\n%s\n\n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))
截图
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
pandas DataFrame 交集 pandas DataFrame 并集 pandas DataFrame 补集