超轻量php框架
超轻量php框架
首页
文档
扩展
日志
文章
社区
登录
注册
导数
可以快速上手的开发文档
#导数
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x...
Python求离散序列导数的示例
有一组4096长度的数据,需要找到一阶导数从正到负的点,和三阶导数从负到正的点,截取..
首页
上一页
1
下一页
末页
文章分类
php教程
mysql教程
JavaScript
python
aardio
startmvc
最新标签
测试
文章
会员
产品
PHP框架
PHP
ElasticSearch
搜索
正则表达式
guanjianzi
key
test
dddddddddddddddddddddddd
http
GET
POST
魔术变量
__METHOD__
__FUNCTION__
区别