python

超轻量级php框架startmvc

详解Python中heapq模块的用法

更新时间:2020-04-22 01:15:02 作者:startmvc
heapq模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[

heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2]。为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。

打印 heapq 类型


import math 
import random
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=' '):
 output = StringIO()
 last_row = -1
 for i, n in enumerate(tree):
 if i:
 row = int(math.floor(math.log(i+1, 2)))
 else:
 row = 0
 if row != last_row:
 output.write('\n')
 columns = 2**row
 col_width = int(math.floor((total_width * 1.0) / columns))
 output.write(str(n).center(col_width, fill))
 last_row = row
 print output.getvalue()
 print '-' * total_width
 print 
 return

data = random.sample(range(1,8), 7)
print 'data: ', data
show_tree(data)

打印结果


data: [3, 2, 6, 5, 4, 7, 1]

 3 
 2 6 
5 4 7 1 
-------------------------
heapq.heappush(heap, item)

push一个元素到heap里, 修改上面的代码


heap = []
data = random.sample(range(1,8), 7)
print 'data: ', data

for i in data:
 print 'add %3d:' % i
 heapq.heappush(heap, i)
 show_tree(heap)

打印结果


data: [6, 1, 5, 4, 3, 7, 2]
add 6:
 6 
 ------------------------------------
add 1:
 1 
 6 
------------------------------------
add 5:
 1 
 6 5 
------------------------------------
add 4:
 1 
 4 5 
 6
------------------------------------
add 3:
 1 
 3 5 
 6 4
------------------------------------
add 7:
 1 
 3 5 
 6 4 7
------------------------------------
add 2:
 1 
 3 2 
 6 4 7 5
------------------------------------

根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。

heapq.heapify(list)

将list类型转化为heap, 在线性时间内, 重新排列列表。


print 'data: ', data
heapq.heapify(data)
print 'data: ', data

show_tree(data)

打印结果


data: [2, 7, 4, 3, 6, 5, 1]
data: [1, 3, 2, 7, 6, 5, 4]

 1 
 3 2 
7 6 5 4 
------------------------------------
heapq.heappop(heap)

删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。


data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

heap = []
while data:
 i = heapq.heappop(data)
 print 'pop %3d:' % i
 show_tree(data)
 heap.append(i)
print 'heap: ', heap

打印结果


data: [4, 1, 3, 7, 5, 6, 2]

 1
 4 2
 7 5 6 3
------------------------------------

pop 1:
 2
 4 3
 7 5 6
------------------------------------
pop 2:
 3
 4 6
 7 5
------------------------------------
pop 3:
 4
 5 6
 7
------------------------------------
pop 4:
 5
 7 6
------------------------------------
pop 5:
 6
 7
------------------------------------
pop 6:
 7
------------------------------------
pop 7:

------------------------------------
heap: [1, 2, 3, 4, 5, 6, 7]

可以看到已排好序的heap。

heapq.heapreplace(iterable, n)

删除现有元素并将其替换为一个新值。


data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

for n in [8, 9, 10]:
 smallest = heapq.heapreplace(data, n)
 print 'replace %2d with %2d:' % (smallest, n)
 show_tree(data)

打印结果


data: [7, 5, 4, 2, 6, 3, 1]

 1
 2 3
 5 6 7 4
------------------------------------

replace 1 with 8:

 2
 5 3
 8 6 7 4
------------------------------------

replace 2 with 9:

 3
 5 4
 8 6 7 9
------------------------------------

replace 3 with 10:

 4
 5 7
 8 6 10 9
------------------------------------

heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)

返回列表中的n个最大值和最小值


data = range(1,6)
l = heapq.nlargest(3, data)
print l # [5, 4, 3]

s = heapq.nsmallest(3, data)
print s # [1, 2, 3]

PS:一个计算题 构建元素个数为 K=5 的最小堆代码实例:


#!/usr/bin/env python 
# -*- encoding: utf-8 -*- 
# Author: kentzhan 
# 
 
import heapq 
import random 
 
heap = [] 
heapq.heapify(heap) 
for i in range(15): 
 item = random.randint(10, 100) 
 print "comeing ", item, 
 if len(heap) >= 5: 
 top_item = heap[0] # smallest in heap 
 if top_item < item: # min heap 
 top_item = heapq.heappop(heap) 
 print "pop", top_item, 
 heapq.heappush(heap, item) 
 print "push", item, 
 else: 
 heapq.heappush(heap, item) 
 print "push", item, 
 pass 
 print heap 
pass 
print heap 
 
print "sort" 
heap.sort() 
 
print heap 

结果:

2016628172708102.png (550×363)

Python heapq