python

超轻量级php框架startmvc

Python图算法实例分析

更新时间:2020-04-22 23:55 作者:startmvc
本文实例讲述了Python图算法。分享给大家供大家参考,具体如下:#encoding=utf-8importnetworkx,hea

本文实例讲述了Python图算法。分享给大家供大家参考,具体如下:


#encoding=utf-8
import networkx,heapq,sys
from matplotlib import pyplot
from collections import defaultdict,OrderedDict
from numpy import array
# Data in graphdata.txt:
# a b 4
# a h 8
# b c 8
# b h 11
# h i 7
# h g 1
# g i 6
# g f 2
# c f 4
# c i 2
# c d 7
# d f 14
# d e 9
# f e 10
def Edge(): return defaultdict(Edge)
class Graph:
 def __init__(self):
 self.Link = Edge()
 self.FileName = ''
 self.Separator = ''
 def MakeLink(self,filename,separator):
 self.FileName = filename
 self.Separator = separator
 graphfile = open(filename,'r')
 for line in graphfile:
 items = line.split(separator)
 self.Link[items[0]][items[1]] = int(items[2])
 self.Link[items[1]][items[0]] = int(items[2])
 graphfile.close()
 def LocalClusteringCoefficient(self,node):
 neighbors = self.Link[node]
 if len(neighbors) <= 1: return 0
 links = 0
 for j in neighbors:
 for k in neighbors:
 if j in self.Link[k]:
 links += 0.5
 return 2.0*links/(len(neighbors)*(len(neighbors)-1))
 def AverageClusteringCoefficient(self):
 total = 0.0
 for node in self.Link.keys():
 total += self.LocalClusteringCoefficient(node)
 return total/len(self.Link.keys())
 def DeepFirstSearch(self,start):
 visitedNodes = []
 todoList = [start]
 while todoList:
 visit = todoList.pop(0)
 if visit not in visitedNodes:
 visitedNodes.append(visit)
 todoList = self.Link[visit].keys() + todoList
 return visitedNodes
 def BreadthFirstSearch(self,start):
 visitedNodes = []
 todoList = [start]
 while todoList:
 visit = todoList.pop(0)
 if visit not in visitedNodes:
 visitedNodes.append(visit)
 todoList = todoList + self.Link[visit].keys()
 return visitedNodes
 def ListAllComponent(self):
 allComponent = []
 visited = {}
 for node in self.Link.iterkeys():
 if node not in visited:
 oneComponent = self.MakeComponent(node,visited)
 allComponent.append(oneComponent)
 return allComponent
 def CheckConnection(self,node1,node2):
 return True if node2 in self.MakeComponent(node1,{}) else False
 def MakeComponent(self,node,visited):
 visited[node] = True
 component = [node]
 for neighbor in self.Link[node]:
 if neighbor not in visited:
 component += self.MakeComponent(neighbor,visited)
 return component
 def MinimumSpanningTree_Kruskal(self,start):
 graphEdges = [line.strip('\n').split(self.Separator) for line in open(self.FileName,'r')]
 nodeSet = {}
 for idx,node in enumerate(self.MakeComponent(start,{})):
 nodeSet[node] = idx
 edgeNumber = 0; totalEdgeNumber = len(nodeSet)-1
 for oneEdge in sorted(graphEdges,key=lambda x:int(x[2]),reverse=False):
 if edgeNumber == totalEdgeNumber: break
 nodeA,nodeB,cost = oneEdge
 if nodeA in nodeSet and nodeSet[nodeA] != nodeSet[nodeB]:
 nodeBSet = nodeSet[nodeB]
 for node in nodeSet.keys():
 if nodeSet[node] == nodeBSet:
 nodeSet[node] = nodeSet[nodeA]
 print nodeA,nodeB,cost
 edgeNumber += 1
 def MinimumSpanningTree_Prim(self,start):
 expandNode = set(self.MakeComponent(start,{}))
 distFromTreeSoFar = {}.fromkeys(expandNode,sys.maxint); distFromTreeSoFar[start] = 0
 linkToNode = {}.fromkeys(expandNode,'');linkToNode[start] = start
 while expandNode:
 # Find the closest dist node
 closestNode = ''; shortestdistance = sys.maxint;
 for node,dist in distFromTreeSoFar.iteritems():
 if node in expandNode and dist < shortestdistance:
 closestNode,shortestdistance = node,dist
 expandNode.remove(closestNode)
 print linkToNode[closestNode],closestNode,shortestdistance
 for neighbor in self.Link[closestNode].iterkeys():
 recomputedist = self.Link[closestNode][neighbor]
 if recomputedist < distFromTreeSoFar[neighbor]:
 distFromTreeSoFar[neighbor] = recomputedist
 linkToNode[neighbor] = closestNode
 def ShortestPathOne2One(self,start,end):
 pathFromStart = {}
 pathFromStart[start] = [start]
 todoList = [start]
 while todoList:
 current = todoList.pop(0)
 for neighbor in self.Link[current]:
 if neighbor not in pathFromStart:
 pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
 if neighbor == end:
 return pathFromStart[end]
 todoList.append(neighbor)
 return []
 def Centrality(self,node):
 path2All = self.ShortestPathOne2All(node)
 # The average of the distances of all the reachable nodes
 return float(sum([len(path)-1 for path in path2All.itervalues()]))/len(path2All)
 def SingleSourceShortestPath_Dijkstra(self,start):
 expandNode = set(self.MakeComponent(start,{}))
 distFromSourceSoFar = {}.fromkeys(expandNode,sys.maxint); distFromSourceSoFar[start] = 0
 while expandNode:
 # Find the closest dist node
 closestNode = ''; shortestdistance = sys.maxint;
 for node,dist in distFromSourceSoFar.iteritems():
 if node in expandNode and dist < shortestdistance:
 closestNode,shortestdistance = node,dist
 expandNode.remove(closestNode)
 for neighbor in self.Link[closestNode].iterkeys():
 recomputedist = distFromSourceSoFar[closestNode] + self.Link[closestNode][neighbor]
 if recomputedist < distFromSourceSoFar[neighbor]:
 distFromSourceSoFar[neighbor] = recomputedist
 for node in distFromSourceSoFar:
 print start,node,distFromSourceSoFar[node]
 def AllpairsShortestPaths_MatrixMultiplication(self,start):
 nodeIdx = {}; idxNode = {}; 
 for idx,node in enumerate(self.MakeComponent(start,{})):
 nodeIdx[node] = idx; idxNode[idx] = node
 matrixSize = len(nodeIdx)
 MaxInt = 1000
 nodeMatrix = array([[MaxInt]*matrixSize]*matrixSize)
 for node in nodeIdx.iterkeys():
 nodeMatrix[nodeIdx[node]][nodeIdx[node]] = 0
 for line in open(self.FileName,'r'):
 nodeA,nodeB,cost = line.strip('\n').split(self.Separator)
 if nodeA in nodeIdx:
 nodeMatrix[nodeIdx[nodeA]][nodeIdx[nodeB]] = int(cost)
 nodeMatrix[nodeIdx[nodeB]][nodeIdx[nodeA]] = int(cost)
 result = array([[0]*matrixSize]*matrixSize)
 for i in xrange(matrixSize):
 for j in xrange(matrixSize):
 result[i][j] = nodeMatrix[i][j]
 for itertime in xrange(2,matrixSize):
 for i in xrange(matrixSize):
 for j in xrange(matrixSize):
 if i==j:
 result[i][j] = 0
 continue
 result[i][j] = MaxInt
 for k in xrange(matrixSize):
 result[i][j] = min(result[i][j],result[i][k]+nodeMatrix[k][j])
 for i in xrange(matrixSize):
 for j in xrange(matrixSize):
 if result[i][j] != MaxInt:
 print idxNode[i],idxNode[j],result[i][j]
 def ShortestPathOne2All(self,start):
 pathFromStart = {}
 pathFromStart[start] = [start]
 todoList = [start]
 while todoList:
 current = todoList.pop(0)
 for neighbor in self.Link[current]:
 if neighbor not in pathFromStart:
 pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
 todoList.append(neighbor)
 return pathFromStart
 def NDegreeNode(self,start,n):
 pathFromStart = {}
 pathFromStart[start] = [start]
 pathLenFromStart = {}
 pathLenFromStart[start] = 0
 todoList = [start]
 while todoList:
 current = todoList.pop(0)
 for neighbor in self.Link[current]:
 if neighbor not in pathFromStart:
 pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
 pathLenFromStart[neighbor] = pathLenFromStart[current] + 1
 if pathLenFromStart[neighbor] <= n+1:
 todoList.append(neighbor)
 for node in pathFromStart.keys():
 if len(pathFromStart[node]) != n+1:
 del pathFromStart[node]
 return pathFromStart
 def Draw(self):
 G = networkx.Graph()
 nodes = self.Link.keys()
 edges = [(node,neighbor) for node in nodes for neighbor in self.Link[node]]
 G.add_edges_from(edges)
 networkx.draw(G)
 pyplot.show()
if __name__=='__main__':
 separator = '\t'
 filename = 'C:\\Users\\Administrator\\Desktop\\graphdata.txt'
 resultfilename = 'C:\\Users\\Administrator\\Desktop\\result.txt'
 myGraph = Graph()
 myGraph.MakeLink(filename,separator)
 print 'LocalClusteringCoefficient',myGraph.LocalClusteringCoefficient('a')
 print 'AverageClusteringCoefficient',myGraph.AverageClusteringCoefficient()
 print 'DeepFirstSearch',myGraph.DeepFirstSearch('a')
 print 'BreadthFirstSearch',myGraph.BreadthFirstSearch('a')
 print 'ShortestPathOne2One',myGraph.ShortestPathOne2One('a','d')
 print 'ShortestPathOne2All',myGraph.ShortestPathOne2All('a')
 print 'NDegreeNode',myGraph.NDegreeNode('a',3).keys()
 print 'ListAllComponent',myGraph.ListAllComponent()
 print 'CheckConnection',myGraph.CheckConnection('a','f')
 print 'Centrality',myGraph.Centrality('c')
 myGraph.MinimumSpanningTree_Kruskal('a')
 myGraph.AllpairsShortestPaths_MatrixMultiplication('a')
 myGraph.MinimumSpanningTree_Prim('a')
 myGraph.SingleSourceShortestPath_Dijkstra('a')
 # myGraph.Draw()