python

超轻量级php框架startmvc

Python实现简单的语音识别系统

更新时间:2020-05-14 07:12:01 作者:startmvc
最近认识了一个做Python语音识别的朋友,聊天时候说到,未来五到十年,Python人工智能会在

最近认识了一个做Python语音识别的朋友,聊天时候说到,未来五到十年,Python人工智能会在国内掀起一股狂潮,对各种应用的冲击,不下于淘宝对实体经济的冲击。在本地(江苏某三线城市)做这一行,短期可能显不出效果,但从长远来看,绝对是一个高明的选择。朋友老家山东的,毕业来这里创业,也是十分有想法啊。

将AI课上学习的知识进行简单的整理,可以识别简单的0-9的单个语音。基本方法就是利用库函数提取mfcc,然后计算误差矩阵,再利用动态规划计算累积矩阵。并且限制了匹配路径的范围。具体的技术网上很多,不再细谈。

现有缺点就是输入的语音长度都是1s,如果不固定长度则识别效果变差。改进思路是提取有效语音部分。但是该部分尚未完全做好,只写了一个原形函数,尚未完善。


import wave
import numpy as np
import matplotlib.pyplot as plt
from python_speech_features import mfcc
from math import cos,sin,sqrt,pi
def read_file(file_name):
 with wave.open(file_name,'r') as file:
 params = file.getparams()
 _, _, framerate, nframes = params[:4] 
 str_data = file.readframes(nframes)
 wave_data = np.fromstring(str_data, dtype = np.short)
 time = np.arange(0, nframes) * (1.0/framerate)
 return wave_data, time 
 return index1,index2
def find_point(data):
 count1,count2 = 0,0
 for index,val in enumerate(data):
 if count1 <40:
 count1 = count1+1 if abs(val)>0.15 else 0
 index1 = index
 if count1==40 and count2 <5:
 count2 = count2+1 if abs(val)<0.001 else 0
 index2 = index
 if count2==5:break
 return index1,index2
def select_valid(data):
 start,end = find_point(normalized(data))
 print(start,end)
 return data[start:end]
def normalized(a):
 maximum = max(a)
 minimum = min(a)
 return a/maximum

def compute_mfcc_coff(file_prefix = ''):
 mfcc_feats = []
 s = range(10)
 I = [0,3,4,8]
 II = [5,7,9]
 Input = {'':s,'I':I,'II':II,'B':s}
 for index,file_name in enumerate(file_prefix+'{0}.wav'.format(i) for i in Input[file_prefix]):
 data,time = read_file(file_name)
 #data = select_valid(data)
 #if file_prefix=='II':data = select_valid(data)

 mfcc_feat = mfcc(data,48000)[:75]
 mfcc_feats.append(mfcc_feat)
 t = np.array(mfcc_feats)
 return np.array(mfcc_feats)
def create_dist():

 for i,m_i in enumerate(mfcc_coff_input):#get the mfcc of input
 for j,m_j in enumerate(mfcc_coff):#get the mfcc of dataset
 #build the distortion matrix bwtween i wav and j wav
 N = len(mfcc_coff[0])
 distortion_mat = np.array([[0]*len(m_i) for i in range(N)],dtype = np.double)
 for k1,mfcc1 in enumerate(m_i):
 for k2,mfcc2 in enumerate(m_j):
 distortion_mat[k1][k2] = sqrt(sum((mfcc1[1:]-mfcc2[1:])**2))
 yield i,j,distortion_mat

def create_Dist():

 for _i,_j,dist in create_dist():
 N = len(dist)
 Dist = np.array([[0]*N for i in range(N)],dtype = np.double)
 Dist[0][0] = dist[0][0]
 for i in range(N):
 for j in range(N):
 if i|j ==0:continue
 pos = [(i-1,j),(i,j-1),(i-1,j-1)]
 Dist[i][j] = dist[i][j] + min(Dist[k1][k2] for k1,k2 in pos if k1>-1 and k2>-1)


 #if _i==0 and _j==1 :print(_i,_j,'\n',Dist,len(Dist[0]),len(Dist[1]))
 yield _i,_j,Dist
def search_path(n):
 comparison = np.array([[0]*10 for i in range(n)],dtype = np.double)
 for _i,_j,Dist in create_Dist():
 N = len(Dist)
 cut_off = 5
 row = [(d,N-1,j) for j,d in enumerate(Dist[N-1]) if abs(N-1-j)<=cut_off]
 col = [(d,i,N-1) for i,d in enumerate(Dist[:,N-1]) if abs(N-1-i)<=cut_off]
 min_d,min_i,min_j = min(row+col )
 comparison[_i][_j] = min_d
 optimal_path_x,optimal_path_y = [min_i],[min_j]
 while min_i and min_j:
 optimal_path_x.append(min_i)
 optimal_path_y.append(min_j)
 pos = [(min_i-1,min_j),(min_i,min_j-1),(min_i-1,min_j-1)]
 #try:
 min_d,min_i,min_j = min(((Dist[int(k1)][int(k2)],k1,k2) for k1,k2 in pos\
 if abs(k1-k2)<=cut_off))

 if _i==_j and _i==4:
 plt.scatter(optimal_path_x[::-1],optimal_path_y[::-1],color = 'red')
 plt.show()
 return comparison

mfcc_coff_input = []
mfcc_coff = []

def match(pre):
 global mfcc_coff_input
 global mfcc_coff
 mfcc_coff_input = compute_mfcc_coff(pre)
 compare = np.array([[0]*10 for i in range(len(mfcc_coff_input))],dtype = np.double)
 for prefix in ['','B']:
 mfcc_coff = compute_mfcc_coff(prefix)
 compare += search_path(len(mfcc_coff_input))
 for l in compare:
 print([int(x) for x in l])
 print(min(((val,index)for index,val in enumerate(l)))[1])
data,time = read_file('8.wav')
match('I')
match('II')

总结

以上就是本文关于Python实现简单的语音识别系统的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python用户推荐系统曼哈顿算法实现完整代码

Python编程使用tkinter模块实现计算器软件完整代码示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

python 语音识别 人工智能