python

超轻量级php框架startmvc

Python数据结构与算法之图的基本实现及迭代器实例详解

更新时间:2020-05-14 10:06:01 作者:startmvc
本文实例讲述了Python数据结构与算法之图的基本实现及迭代器。分享给大家供大家参考,具

本文实例讲述了Python数据结构与算法之图的基本实现及迭代器。分享给大家供大家参考,具体如下:

这篇文章参考自《复杂性思考》一书的第二章,并给出这一章节里我的习题解答。

(这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛。。。。。代码很少,给点提示,然后让读者自己思考怎么实现)

先定义顶点和边


class Vertex(object):
 def __init__(self, label=''):
 self.label = label
 def __repr__(self):
 return 'Vertex(%s)' % repr(self.label)
 # __repr__返回表达式, __str__返回可阅读信息
 __str__=__repr__ # 使其指向同一个函数
class Edge(tuple):
 # 继承自建tuple类型并重写new方法
 def __new__(cls, e1, e2):
 return tuple.__new__(cls, (e1,e2))
 def __repr__(self):
 return "Edge(%s, %s)" % (repr(self[0]), repr(self[1]))
 __str__ = __repr__

创建顶点和边的方法如下


if __name__=="__main__":
 # 创建两个顶点一条边
 v = Vertex('v')
 w = Vertex('w')
 e = Edge(v,w)
# print e
 # 将顶点和边放入图中
 g = Graph([v,w],[e])
# print g

创建一个基本的图类:


# 通过字典的字典实现图的结构
class Graph(dict):
 def __init__(self, vs=[], es=[]):
 """ 建立一个新的图,(vs)为顶点vertices列表,(es)为边缘edges列表 """
 for v in vs:
 self.add_vertex(v)
 for e in es:
 self.add_edge(e)
 def add_vertex(self,v):
 """ 添加顶点 v: 使用字典结构"""
 self[v] = {}
 def add_edge(self, e):
 """ 添加边缘 e: e 为一个元组(v,w) 
 在两个顶点 w 和 v 之间添加成员e ,如果两个顶点之间已有边缘,则替换之 """
 v, w = e
 # 由于一条边会产生两个项目,因此该实现代表了一个无向图
 self[v][w] = e
 self[w][v] = e

练习2-2解答:图的一些基本操作


def get_edge(self,v1, v2):
 """ 接收两个顶点,若这两个顶点之间右边则返回这条边,否则返回None """
 try:
 return self[v1][v2]
 except:
 return None
 def remove_edge(self,e):
 """ 接受一条边,并且删除图中该边的所有引用 """
 v, w = e
 self[v].pop(w)
 self[w].pop(v)
 def vertices(self):
 """ 返回图中所有顶点的列表 """
 return self.keys()
 def edges(self):
 """ 返回图中边的列表 """
 es = set() # 为了避免返回重复的边,设为集合
 for v1 in self.vertices():
 for v2 in self.vertices():
 es.add(self.get_edge(v2, v1))
 es.discard(None) # 若集合中存在None元素,则删除 
 return list(es)
 """ 利用图的字典结构获得所有边
 es = []
 for v in self.vertices():
 es.extend(self[v].values())
 es = list(set(es))
 return es
 """
 def out_vertices(self,v):
 """ 接受一个Vertex并返回邻近顶点(通过一条边连接到给定节点的节点)的列表 """
 return self[v].keys()
 def out_edges(self,v):
 """ 接受一个Vertex并返回连接到给定节点的边的列表 """
 return self[v].values()
 def add_all_edges(self,vs=None):
 """ 从一个无边的图开始,通过在各个顶点间添加边来生成一个完全图
 输入为目标顶点的列表,如果为None,则对所有的点进行全联结 """
 if vs == None:
 vs = self.vertices()
 for v1 in vs:
 for v2 in vs:
 if v1 is v2 : continue # 假设不存在单顶点连通
 self.add_edge(Edge(v1,v2))

习题2-3 生成正则图

正则图是指图中每个顶点的度相同,生成正则图需要顶点数和度数满足一定条件,具体算法见注释:


def add_regular_edges(self,k):
 """ 从一个无边的图开始不断添加边,使得每个顶点都有相同的度k
 一个节点的度指的是连接到它的边的数量 """
 n = len(self.vertices())
 assert n > 1
 if k==1:
 vs = self.vertices()
 for i in range(n-1):
 self.add_edge(Edge(vs[i],vs[i+1]))
 return True
 if n < k+1:
 print "Cannot create regular graph"
 return False
 if n == k+1:
 self.add_all_edges()
 return True
 """
 设度数为k,图的阶数(顶点个数)为n
 利用归纳方法生成边的个数
 偶数度 当k=2m,m>=1时
 递归过程:
 0. 假设n>k+1,因为当n=k+1时,只要生成全连接即可,当n<k+1,则不能生成正则图
 1. 当n>k+1时:先从原图中前k+1个顶点(v1,v2,...,v2m-1,v2m, v2m+1)生成完全图
 此时,该k+1个顶点的度数均为k
 2. 现添加一个顶点vx,x=2m+2该顶点的度为0
 3. 删除m条不相连的边,如(v1,v2),(v3,v4),(v5,v6),...,(v2m-1,v2m),这时顶点v1,v2,...v2m的度为k-1
 记录下这m条边的顶点
 4. 联结 (v1,vx),(v2,vx),...,(v2m-1,vx),(v2m,vx),使得v1,v2,...,v2m,v2m+2的度=k
 5. 对新加入的点,重复3,4
 奇数度 当k=2m+1,m>=1时
 递归过程:
 设图G是有n个顶点的k正则图,且k=2m+1,m>=1,按照下面法则生成新图G1
 0. 假设n>k+1,因为当n=k+1时,只要生成全连接即可,当n<k+1,则不能生成正则图
 1. 在图G中任取m条顶点不同的边(x1,x2),(x3,x4),(x5,x6),...,(x2m-1,x2m) 记为组es1
 再另取m条顶点不同的边 (y1,y2),(y3,y4),(y5,y6),...,(y2m-1,y2m) 记为组es2
 其中xi和yj可以存在相同,但是两组中的所有边都不相同
 此时,该k+1个顶点的度数均为k
 2. 在图G中去掉m条边(x1,x2),(x3,x4),(x5,x6),...,(x2m-1,x2m),增加新的顶点v1,并增加2m条新边
 (v1,x1),(v1,x2),...,(v1,x2m-1),(v1,x2m)
 3. 在图G中去掉m条边(y1,y2),(y3,y4),(y5,y6),...,(y2m-1,y2m),增加新的顶点v2,并增加2m条新边
 (v2,y1),(v2,y2),...,(v2,y2m-1),(v2,y2m)
 4. 增加新边 (v1,v2)
 5. 对新的点v3,v4,重复1,2,3,4
 增加的顶点和边保证了v1,v2和x1,x2,...,x2m,y1,y2,...,y2m的度数为2m+1其余顶点度数不变
 """
 if k%2==0:
 # 选取前k+1个点,先构造完全图
 vs = self.vertices()
 self.add_all_edges(vs[:k+1])
 for i in range(k+1,n): # 对之后的点进行遍历 
 vsdel = [] # 记录删除过边的顶点
 for e in self.edges(): 
 # 获得边的两个顶点
 v1,v2 = e[0],e[1] 
 if v1 not in vsdel and v2 not in vsdel:
 vsdel.append(v1)
 vsdel.append(v2)
 # 删除不相连的边
 self.remove_edge(e)
 # 当已删除的边数为k/2,即共k个非邻近点时,退出循环
 if len(vsdel)==k:
 break 
 # 将新的点与记录的点进行连接
 for v in vsdel:
 self.add_edge(Edge(v,vs[i]))
 else:
 if n%2==0 and n>k+1: # 由上述法则可知,n必须为偶数
 # 选取前k+1个偶数点,先构造完全图
 vs = self.vertices()
 self.add_all_edges(vs[:k+1])
 for i in range(k+1,n,2): # 之后的点进行两两遍历
 vsdel1 = [] # 记录第1组删除的点
 edel1 = [] # 记录第1组删除的边
 for e in self.edges(): 
 # 获得边的两个顶点
 v1,v2 = e[0],e[1] 
 if v1 not in vsdel1 and v2 not in vsdel1:
 vsdel1.append(v1)
 vsdel1.append(v2)
 # 删除不相连的边
 edel1.append(e)
 self.remove_edge(e)
 # 当已删除的边数为m,即共k-1个非邻近点时,退出循环
 if len(vsdel1)==k-1:
 break
 vsdel2 = [] # 记录第2组删除的点
 edel2 = [] # 记录第2组删除的边
 for e in self.edges(): 
 # 获得边的两个顶点
 v1,v2 = e[0],e[1] 
 # 点可以和第一组相同,但边不可以
 if v1 not in vsdel2 and v2 not in vsdel2 and e not in edel1:
 vsdel2.append(v1)
 vsdel2.append(v2)
 # 删除不相连的边
 edel2.append(e)
 self.remove_edge(e)
 # 当已删除的边数为m,即共k-1个非邻近点时,退出循环
 if len(vsdel2)==k-1:
 break
 # 分别连接两组边
 for v in vsdel1:
 self.add_edge(Edge(v,vs[i]))
 for v in vsdel2:
 self.add_edge(Edge(v,vs[i+1]))
 self.add_edge(Edge(vs[i],vs[i+1]))
 else:
 print "Cannot create regular graph"
 return False
 return True

习题2-4:判断一个图是否连通,可以用BFS实现:


def is_connect(self):
 """ 判断一个图是否连通的
 从任意顶点开始进行一次BFS,将所有到达的节点都标记上,然后检查是否所有的节点都被标记上 """
 pass
 vs = self.vertices() # 获得所有顶点
 q, s = [], set() # 搜索队列,标记集合
 q.append(vs[0]) # 从第1个顶点开始搜索
 while q: # 当队列非空
 v = q.pop(0) # 从队列中删除移一个顶点
 s.add(v) # 并标记当前顶点
 # 搜索当前顶点的连接点,如果这些连接点没有被标记
 # 则将其添加到队列中
 for w in self.out_vertices(v):
 if w not in s:
 q.append(w)
 # 当队列为空时完成搜索,检查标记过的顶点是否等于图的顶点数
 if len(s)==len(vs):
 return True
 else:
 return False

测试代码:需要用到作者书中网页提供的GraphWorld.py实现可视化功能


from GraphWorld import CircleLayout,GraphWorld
from Graph import Graph,Vertex,Edge
import string
def test(n,k):
 # create n Vertices
 labels = string.ascii_lowercase + string.ascii_uppercase
 vs = [Vertex(c) for c in labels[:n]]
 # create a graph and a layout
 g = Graph(vs)
 g.add_regular_edges(k)
 layout = CircleLayout(g)
 # draw the graph
 gw = GraphWorld()
 gw.show_graph(g, layout)
 gw.mainloop()
if __name__ == '__main__':
 test(n=10,k=3)

以下为生成10个结点,度为3的正则图:

生成随机图,继承上面的Graph类:


from Graph import Graph,Vertex,Edge
from random import randint
class RandomGraph(Graph):
 """ 随即图 """
 def add_random_edges(self,p):
 """ 从一个·无边图开始随机生成边
 使得任意两个节点间存在边的概率为p (0<=p<=1) """
 for v1 in self.vertices():
 for v2 in self.vertices():
 if v1 is v2: continue
 if randint(0,100) < p*100 :
 self.add_edge(Edge(v1,v2))

测试一下:


from GraphWorld import CircleLayout,GraphWorld
import string
def test(n,p):
 # create n Vertices
 labels = string.ascii_lowercase + string.ascii_uppercase
 vs = [Vertex(c) for c in labels[:n]]
 # create a graph and a layout
 g = RandomGraph(vs)
 g.add_random_edges(p)
 print "connect?:",g.is_connect()
 layout = CircleLayout(g)
 # draw the graph
 gw = GraphWorld()
 gw.show_graph(g, layout)
 gw.mainloop()
if __name__ == '__main__':
 test(p=0.2,n=5)

迭代器部分代码:


# 迭代器
class AllTrue(object):
 def next(self):
 return True
 def __iter__(self):
 return self
# 使用AllTrue之类的迭代器可以表现无限序列
print zip('abc',AllTrue())
# 通过编写生成器函数创建一个迭代器
def generate_letters():
 for letter in 'abc':
 yield letter
iter = generate_letters()
import string
# 带有无限循环的生成器会返回一个不会终止的迭代器
def alphabet_cycle():
 while True:
 for i in range(1,10):
 for c in string.lowercase:
 yield c+str(i)
iter_ac = alphabet_cycle()
print iter_ac.next()

Python 数据结构 算法 基本实现 迭代器