现在我们用python代码实现感知器算法。
# -*- coding: utf-8 -*-
import numpy as np
class Perceptron(object):
 """
 eta:学习率
 n_iter:权重向量的训练次数
 w_:神经分叉权重向量
 errors_:用于记录神经元判断出错次数
 """
 def __init__(self, eta=0.01, n_iter=2):
 self.eta = eta
 self.n_iter = n_iter
 pass
 def fit(self, X, y):
 """
 输入训练数据培训神经元
 X:神经元输入样本向量
 y: 对应样本分类
 X:shape[n_samples,n_features]
 x:[[1,2,3],[4,5,6]]
 n_samples = 2 元素个数
 n_features = 3 子向量元素个数
 y:[1,-1]
 初始化权重向量为0
 加一是因为前面算法提到的w0,也就是步调函数阈值
 """
 self.w_ = np.zeros(1 + X.shape[1])
 self.errors_ = []
 for _ in range(self.n_iter):
 errors = 0
 """
 zip(X,y) = [[1,2,3,1],[4,5,6,-1]]
 xi是前面的[1,2,3]
 target是后面的1
 """
 for xi, target in zip(X, y):
 """
 predict(xi)是计算出来的分类
 """
 update = self.eta * (target - self.predict(xi))
 self.w_[1:] += update * xi
 self.w_[0] += update
 print update
 print xi
 print self.w_
 errors += int(update != 0.0)
 self.errors_.append(errors)
 pass
 def net_input(self, X):
 """
 z = w0*1+w1*x1+....Wn*Xn
 """
 return np.dot(X, self.w_[1:]) + self.w_[0]
 def predict(self, X):
 return np.where(self.net_input(X) >= 0, 1, -1)
if __name__ == '__main__':
 datafile = '../data/iris.data.csv'
 import pandas as pd
 df = pd.read_csv(datafile, header=None)
 import matplotlib.pyplot as plt
 import numpy as np
 y = df.loc[0:100, 4].values
 y = np.where(y == "Iris-setosa", 1, -1)
 X = df.iloc[0:100, [0, 2]].values
 # plt.scatter(X[:50, 0], X[:50, 1], color="red", marker='o', label='setosa')
 # plt.scatter(X[50:100, 0], X[50:100, 1], color="blue", marker='x', label='versicolor')
 # plt.xlabel("hblength")
 # plt.ylabel("hjlength")
 # plt.legend(loc='upper left')
 # plt.show()
 pr = Perceptron()
 pr.fit(X, y)
其中数据为
 
 
控制台输出为
 
 
你们跑代码的时候把n_iter设置大点,我这边是为了看每次执行for循环时方便查看数据变化。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。