python

超轻量级php框架startmvc

Python机器学习之SVM支持向量机

更新时间:2020-05-16 00:54:01 作者:startmvc
SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集

SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。 SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了。。强烈推荐。 还有一个比较通俗的简单版本的:手把手教你实现SVM算法

SVN原理比较复杂,但是思想很简单,一句话概括,就是通过某种核函数,将数据在高维空间里寻找一个最优超平面,能够将两类数据分开。

针对不同数据集,不同的核函数的分类效果可能完全不一样。可选的核函数有这么几种: 线性函数:形如K(x,y)=x*y这样的线性函数; 多项式函数:形如K(x,y)=[(x·y)+1]^d这样的多项式函数; 径向基函数:形如K(x,y)=exp(-|x-y|^2/d^2)这样的指数函数; Sigmoid函数:就是上一篇文章中讲到的Sigmoid函数。

我们就利用之前的几个数据集,直接给出Python代码,看看运行效果:

测试1:身高体重数据


# -*- coding: utf-8 -*- 
import numpy as np 
import scipy as sp 
from sklearn import svm 
from sklearn.cross_validation import train_test_split 
import matplotlib.pyplot as plt 
 
data = [] 
labels = [] 
with open("data\\1.txt") as ifile: 
 for line in ifile: 
 tokens = line.strip().split(' ') 
 data.append([float(tk) for tk in tokens[:-1]]) 
 labels.append(tokens[-1]) 
x = np.array(data) 
labels = np.array(labels) 
y = np.zeros(labels.shape) 
y[labels=='fat']=1 
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.0) 
 
h = .02 
# create a mesh to plot in 
x_min, x_max = x_train[:, 0].min() - 0.1, x_train[:, 0].max() + 0.1 
y_min, y_max = x_train[:, 1].min() - 1, x_train[:, 1].max() + 1 
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), 
 np.arange(y_min, y_max, h)) 
 
''''' SVM ''' 
# title for the plots 
titles = ['LinearSVC (linear kernel)', 
 'SVC with polynomial (degree 3) kernel', 
 'SVC with RBF kernel', 
 'SVC with Sigmoid kernel'] 
clf_linear = svm.SVC(kernel='linear').fit(x, y) 
#clf_linear = svm.LinearSVC().fit(x, y) 
clf_poly = svm.SVC(kernel='poly', degree=3).fit(x, y) 
clf_rbf = svm.SVC().fit(x, y) 
clf_sigmoid = svm.SVC(kernel='sigmoid').fit(x, y) 
 
for i, clf in enumerate((clf_linear, clf_poly, clf_rbf, clf_sigmoid)): 
 answer = clf.predict(np.c_[xx.ravel(), yy.ravel()]) 
 print(clf) 
 print(np.mean( answer == y_train)) 
 print(answer) 
 print(y_train) 
 
 plt.subplot(2, 2, i + 1) 
 plt.subplots_adjust(wspace=0.4, hspace=0.4) 
 
 # Put the result into a color plot 
 z = answer.reshape(xx.shape) 
 plt.contourf(xx, yy, z, cmap=plt.cm.Paired, alpha=0.8) 
 
 # Plot also the training points 
 plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=plt.cm.Paired) 
 plt.xlabel(u'身高') 
 plt.ylabel(u'体重') 
 plt.xlim(xx.min(), xx.max()) 
 plt.ylim(yy.min(), yy.max()) 
 plt.xticks(()) 
 plt.yticks(()) 
 plt.title(titles[i]) 
 
plt.show() 

运行结果如下:

可以看到,针对这个数据集,使用3次多项式核函数的SVM,得到的效果最好。

测试2:影评态度

下面看看SVM在康奈尔影评数据集上的表现:(代码略)

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='linear', max_iter=-1, probability=False, random_state=None,   shrinking=True, tol=0.001, verbose=False) 0.814285714286

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='poly', max_iter=-1, probability=False, random_state=None,  shrinking=True, tol=0.001, verbose=False) 0.492857142857

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='rbf', max_iter=-1, probability=False, random_state=None,  shrinking=True, tol=0.001, verbose=False) 0.492857142857

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='sigmoid', max_iter=-1, probability=False, random_state=None,   shrinking=True, tol=0.001, verbose=False) 0.492857142857

可见在该数据集上,线性分类器效果最好。

测试3:圆形边界

最后我们测试一个数据分类边界为圆形的情况:圆形内为一类,原型外为一类。看这类非线性的数据SVM表现如何: 测试数据生成代码如下所示:


''''' 数据生成 ''' 
h = 0.1 
x_min, x_max = -1, 1 
y_min, y_max = -1, 1 
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), 
 np.arange(y_min, y_max, h)) 
n = xx.shape[0]*xx.shape[1] 
x = np.array([xx.T.reshape(n).T, xx.reshape(n)]).T 
y = (x[:,0]*x[:,0] + x[:,1]*x[:,1] < 0.8) 
y.reshape(xx.shape) 
 
x_train, x_test, y_train, y_test\ 
 = train_test_split(x, y, test_size = 0.2) 

测试结果如下:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='linear', max_iter=-1, probability=False, random_state=None,   shrinking=True, tol=0.001, verbose=False) 0.65 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='poly', max_iter=-1, probability=False, random_state=None,   shrinking=True, tol=0.001, verbose=False) 0.675 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='rbf', max_iter=-1, probability=False, random_state=None,   shrinking=True, tol=0.001, verbose=False) 0.9625 SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='sigmoid', max_iter=-1, probability=False, random_state=None,   shrinking=True, tol=0.001, verbose=False) 0.65

可以看到,对于这种边界,径向基函数的SVM得到了近似完美的分类结果。而其他的分类器显然束手无策。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

Python SVM