python

超轻量级php框架startmvc

微信跳一跳python代码实现

更新时间:2020-05-16 22:42:01 作者:startmvc
本文实例为大家分享了python微信跳一跳的具体代码,供大家参考,具体内容如下部分代码分

本文实例为大家分享了python微信跳一跳的具体代码,供大家参考,具体内容如下

部分代码分享:

wechat_jump.py


from __future__ import print_function

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import math
import time
import os
import cv2
import datetime

scale = 0.25

template = cv2.imread('character.png')
template = cv2.resize(template, (0, 0), fx=scale, fy=scale)
template_size = template.shape[:2]


def search(img):
 result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

 cv2.rectangle(img, (min_loc[0], min_loc[1]), (min_loc[0] + template_size[1], min_loc[1] + template_size[0]), (255, 0, 0), 4)

 return img, min_loc[0] + template_size[1] / 2, min_loc[1] + template_size[0]

def pull_screenshot():
 filename = datetime.datetime.now().strftime("%H%M%S") + '.png'
 os.system('mv autojump.png {}'.format(filename))
 os.system('adb shell screencap -p /sdcard/autojump.png')
 os.system('adb pull /sdcard/autojump.png .')

def jump(distance):
 press_time = distance * 1.35
 press_time = int(press_time)
 cmd = 'adb shell input swipe 320 410 320 410 ' + str(press_time)
 print(cmd)
 os.system(cmd)

def update_data():
 global src_x, src_y

 img = cv2.imread('autojump.png')
 img = cv2.resize(img, (0, 0), fx=scale, fy=scale)

 img, src_x, src_y = search(img)
 return img


fig = plt.figure()
index = 0

# pull_screenshot()
img = update_data()

update = True 
im = plt.imshow(img, animated=True)


def updatefig(*args):
 global update

 if update:
 time.sleep(1)
 pull_screenshot()
 im.set_array(update_data())
 update = False
 return im,

def onClick(event): 
 global update 
 global src_x, src_y
 
 dst_x, dst_y = event.xdata, event.ydata

 distance = (dst_x - src_x)**2 + (dst_y - src_y)**2 
 distance = (distance ** 0.5) / scale
 print('distance = ', distance)
 jump(distance)
 update = True


fig.canvas.mpl_connect('button_press_event', onClick)
ani = animation.FuncAnimation(fig, updatefig, interval=5, blit=True)
plt.show()

wechat_jump_auto.py


# coding: utf-8
import os
import sys
import subprocess
import shutil
import time
import math
from PIL import Image, ImageDraw
import random
import json
import re


# === 思路 ===
# 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
# 根据两个点的距离乘以一个时间系数获得长按的时间
# 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,
# 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,
# 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标
# 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,
# 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,
# 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,
# 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标
# 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)


# TODO: 解决定位偏移的问题
# TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正
# TODO: 一些固定值根据截图的具体大小计算
# TODO: 直接用 X 轴距离简化逻辑


def open_accordant_config():
 screen_size = _get_screen_size()
 config_file = "{path}/config/{screen_size}/config.json".format(
 path=sys.path[0],
 screen_size=screen_size
 )
 if os.path.exists(config_file):
 with open(config_file, 'r') as f:
 print("Load config file from {}".format(config_file))
 return json.load(f)
 else:
 with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:
 print("Load default config")
 return json.load(f)


def _get_screen_size():
 size_str = os.popen('adb shell wm size').read()
 if not size_str:
 print('请安装ADB及驱动并配置环境变量')
 sys.exit()
 m = re.search('(\d+)x(\d+)', size_str)
 if m:
 width = m.group(1)
 height = m.group(2)
 return "{height}x{width}".format(height=height, width=width)


config = open_accordant_config()

# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置
under_game_score_y = config['under_game_score_y']
press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节
piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节
piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节

# 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标
if config.get('swipe'):
 swipe = config['swipe']
else:
 swipe = {}
 #设置模拟按压各项参数,经过多台手机测试,其中2160x1080建议调整参数为320,1210,720,910
 #使用vivox20,夏普全面屏和小米mix2测试过,均可达到2000+分数(记得在开发者设置打开usb安全验证)
 swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410


screenshot_way = 2
screenshot_backup_dir = 'screenshot_backups/'
if not os.path.isdir(screenshot_backup_dir):
 os.mkdir(screenshot_backup_dir)


def pull_screenshot():
 global screenshot_way
 # 新的方法请根据效率及适用性由高到低排序
 if screenshot_way == 2 or screenshot_way == 1:
 process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
 screenshot = process.stdout.read()
 if screenshot_way == 2:
 binary_screenshot = screenshot.replace(b'\r\n', b'\n')
 else:
 binary_screenshot = screenshot.replace(b'\r\r\n', b'\n')
 f = open('autojump.png', 'wb')
 f.write(binary_screenshot)
 f.close()
 elif screenshot_way == 0:
 os.system('adb shell screencap -p /sdcard/autojump.png')
 os.system('adb pull /sdcard/autojump.png .')


def backup_screenshot(ts):
 # 为了方便失败的时候 debug
 if not os.path.isdir(screenshot_backup_dir):
 os.mkdir(screenshot_backup_dir)
 shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))


def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
 draw = ImageDraw.Draw(im)
 # 对debug图片加上详细的注释
 draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3)
 draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
 draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
 draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
 draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
 draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0))
 draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255))
 del draw
 im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))


def set_button_position(im):
 # 将swipe设置为 `再来一局` 按钮的位置
 global swipe_x1, swipe_y1, swipe_x2, swipe_y2
 w, h = im.size
 left = w / 2
 top = int(1584 * (h / 1920.0))
 swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top


def jump(distance):
 press_time = distance * press_coefficient
 press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间
 press_time = int(press_time)
 cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
 x1=swipe_x1,
 y1=swipe_y1,
 x2=swipe_x2,
 y2=swipe_y2,
 duration=press_time
 )
 print(cmd)
 os.system(cmd)
 return press_time

def find_piece_and_board(im):
 w, h = im.size

 piece_x_sum = 0
 piece_x_c = 0
 piece_y_max = 0
 board_x = 0
 board_y = 0
 scan_x_border = int(w / 8) # 扫描棋子时的左右边界
 scan_start_y = 0 # 扫描的起始y坐标
 im_pixel=im.load()
 # 以50px步长,尝试探测scan_start_y
 for i in range(int(h / 3), int( h*2 /3 ), 50):
 last_pixel = im_pixel[0,i]
 for j in range(1, w):
 pixel=im_pixel[j,i]
 # 不是纯色的线,则记录scan_start_y的值,准备跳出循环
 if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
 scan_start_y = i - 50
 break
 if scan_start_y:
 break
 print('scan_start_y: ', scan_start_y)

 # 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3
 for i in range(scan_start_y, int(h * 2 / 3)):
 for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销
 pixel = im_pixel[j,i]
 # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
 if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
 piece_x_sum += j
 piece_x_c += 1
 piece_y_max = max(i, piece_y_max)

 if not all((piece_x_sum, piece_x_c)):
 return 0, 0, 0, 0
 piece_x = int(piece_x_sum / piece_x_c);
 piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半

 #限制棋盘扫描的横坐标,避免音符bug
 if piece_x < w/2:
 board_x_start = piece_x
 board_x_end = w
 else:
 board_x_start = 0
 board_x_end = piece_x

 for i in range(int(h / 3), int(h * 2 / 3)):
 last_pixel = im_pixel[0, i]
 if board_x or board_y:
 break
 board_x_sum = 0
 board_x_c = 0

 for j in range(int(board_x_start), int(board_x_end)):
 pixel = im_pixel[j,i]
 # 修掉脑袋比下一个小格子还高的情况的 bug
 if abs(j - piece_x) < piece_body_width:
 continue

 # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
 if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
 board_x_sum += j
 board_x_c += 1
 if board_x_sum:
 board_x = board_x_sum / board_x_c
 last_pixel=im_pixel[board_x,i]

 #从上顶点往下+274的位置开始向上找颜色与上顶点一样的点,为下顶点
 #该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误
 for k in range(i+274, i, -1): #274取开局时最大的方块的上下顶点距离
 pixel = im_pixel[board_x,k]
 if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10:
 break
 board_y = int((i+k) / 2)

 #如果上一跳命中中间,则下个目标中心会出现r245 g245 b245的点,利用这个属性弥补上一段代码可能存在的判断错误
 #若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低
 for l in range(i, i+200):
 pixel = im_pixel[board_x,l]
 if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:
 board_y = l+10
 break



 if not all((board_x, board_y)):
 return 0, 0, 0, 0

 return piece_x, piece_y, board_x, board_y

def dump_device_info():
 size_str = os.popen('adb shell wm size').read()
 device_str = os.popen('adb shell getprop ro.product.model').read()
 density_str = os.popen('adb shell wm density').read()
 print("如果你的脚本无法工作,上报issue时请copy如下信息:\n**********\
 \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
 size=size_str.strip(),
 type=device_str.strip(),
 dpi=density_str.strip(),
 os=sys.platform,
 python=sys.version
 ))


def check_screenshot():
 global screenshot_way
 if os.path.isfile('autojump.png'):
 os.remove('autojump.png')
 if (screenshot_way < 0):
 print('暂不支持当前设备')
 sys.exit()
 pull_screenshot()
 try:
 Image.open('./autojump.png').load()
 print('采用方式{}获取截图'.format(screenshot_way))
 except:
 screenshot_way -= 1
 check_screenshot()

def main():

 dump_device_info()
 check_screenshot()

 while True:
 pull_screenshot()
 im = Image.open('./autojump.png')
 # 获取棋子和 board 的位置
 piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
 ts = int(time.time())
 print(ts, piece_x, piece_y, board_x, board_y)
 set_button_position(im)
 jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
 save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
 backup_screenshot(ts)
 time.sleep(1) # 为了保证截图的时候应落稳了,多延迟一会儿


if __name__ == '__main__':
 main()

代码较多,直接为大家分享源码下载链接,很详细:python微信跳一跳

更多内容大家可以参考专题《微信跳一跳》进行学习。

相关文章学习推荐:

跳一跳小游戏python脚本

python基于TensorFlow实现微信跳一跳的AI

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python微信跳一跳辅助 python微信跳一跳 python跳一跳