python

超轻量级php框架startmvc

Python实现的径向基(RBF)神经网络示例

更新时间:2020-05-21 11:24:01 作者:startmvc
本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:fro

本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:


from numpy import array, append, vstack, transpose, reshape, \
 dot, true_divide, mean, exp, sqrt, log, \
 loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
 return norm(a - b)
def gaussian (x, mu, sigma):
 return exp(- metrics(mu, x)**2 / (2 * sigma**2))
def multiQuadric (x, mu, sigma):
 return pow(metrics(mu,x)**2 + sigma**2, 0.5)
def invMultiQuadric (x, mu, sigma):
 return pow(metrics(mu,x)**2 + sigma**2, -0.5)
def plateSpine (x,mu):
 r = metrics(mu,x)
 return (r**2) * log(r)
class Rbf:
 def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
 self.prefix = prefix
 self.workers = workers
 self.extra_neurons = extra_neurons
 # Import partial model
 if from_files is not None:
 w_handle = self.w_handle = File(from_files['w'], 'r')
 mu_handle = self.mu_handle = File(from_files['mu'], 'r')
 sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
 self.w = w_handle['w']
 self.mu = mu_handle['mu']
 self.sigmas = sigma_handle['sigmas']
 self.neurons = self.sigmas.shape[0]
 def _calculate_error(self, y):
 self.error = mean(abs(self.os - y))
 self.relative_error = true_divide(self.error, mean(y))
 def _generate_mu(self, x):
 n = self.n
 extra_neurons = self.extra_neurons
 # TODO: Make reusable
 mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
 mu_indices = sample(range(n), extra_neurons)
 mu_new = x[mu_indices, :]
 mu = vstack((mu_clusters, mu_new))
 return mu
 def _calculate_sigmas(self):
 neurons = self.neurons
 mu = self.mu
 sigmas = zeros((neurons, ))
 for i in xrange(neurons):
 dists = [0 for _ in xrange(neurons)]
 for j in xrange(neurons):
 if i != j:
 dists[j] = metrics(mu[i], mu[j])
 sigmas[i] = mean(dists)* 2
 # max(dists) / sqrt(neurons * 2))
 return sigmas
 def _calculate_phi(self, x):
 C = self.workers
 neurons = self.neurons
 mu = self.mu
 sigmas = self.sigmas
 phi = self.phi = None
 n = self.n
 def heavy_lifting(c, phi):
 s = jobs[c][1] - jobs[c][0]
 for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
 for j in xrange(neurons):
 # phi[i, j] = metrics(x[i,:], mu[j])**3)
 # phi[i, j] = plateSpine(x[i,:], mu[j]))
 # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
 phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
 # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
 if k % 1000 == 0:
 percent = true_divide(k, s)*100
 print(c, ': {:2.2f}%'.format(percent))
 print(c, ': Done')
 # distributing the work between 4 workers
 shared_array = Array(c_double, n * neurons)
 phi = frombuffer(shared_array.get_obj())
 phi = phi.reshape((n, neurons))
 jobs = []
 workers = []
 p = n / C
 m = n % C
 for c in range(C):
 jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
 worker = Process(target = heavy_lifting, args = (c, phi))
 workers.append(worker)
 worker.start()
 for worker in workers:
 worker.join()
 return phi
 def _do_algebra(self, y):
 phi = self.phi
 w = lstsq(phi, y)[0]
 os = dot(w, transpose(phi))
 return w, os
 # Saving to HDF5
 os_h5 = os_handle.create_dataset('os', data = os)
 def train(self, x, y):
 self.n = x.shape[0]
 ## Initialize HDF5 caches
 prefix = self.prefix
 postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
 name_template = prefix + '-{}-' + postfix
 phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
 os_handle = self.w_handle = File(name_template.format('os'), 'w')
 w_handle = self.w_handle = File(name_template.format('w'), 'w')
 mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
 sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
 ## Mu generation
 mu = self.mu = self._generate_mu(x)
 self.neurons = mu.shape[0]
 print('({} neurons)'.format(self.neurons))
 # Save to HDF5
 mu_h5 = mu_handle.create_dataset('mu', data = mu)
 ## Sigma calculation
 print('Calculating Sigma...')
 sigmas = self.sigmas = self._calculate_sigmas()
 # Save to HDF5
 sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
 print('Done')
 ## Phi calculation
 print('Calculating Phi...')
 phi = self.phi = self._calculate_phi(x)
 print('Done')
 # Saving to HDF5
 print('Serializing...')
 phi_h5 = phi_handle.create_dataset('phi', data = phi)
 del phi
 self.phi = phi_h5
 print('Done')
 ## Algebra
 print('Doing final algebra...')
 w, os = self.w, _ = self._do_algebra(y)
 # Saving to HDF5
 w_h5 = w_handle.create_dataset('w', data = w)
 os_h5 = os_handle.create_dataset('os', data = os)
 ## Calculate error
 self._calculate_error(y)
 print('Done')
 def predict(self, test_data):
 mu = self.mu = self.mu.value
 sigmas = self.sigmas = self.sigmas.value
 w = self.w = self.w.value
 print('Calculating phi for test data...')
 phi = self._calculate_phi(test_data)
 os = dot(w, transpose(phi))
 savetxt('iok3834.txt', os, delimiter='\n')
 return os
 @property
 def summary(self):
 return '\n'.join( \
 ['-----------------',
 'Training set size: {}'.format(self.n),
 'Hidden layer size: {}'.format(self.neurons),
 '-----------------',
 'Absolute error : {:02.2f}'.format(self.error),
 'Relative error : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
 mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
 sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
 w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
 n = test_data.shape[0]
 neur = mu.shape[0]
 mu = transpose(mu)
 mu.reshape((n, neur))
 phi = zeros((n, neur))
 for i in range(n):
 for j in range(neur):
 phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
 os = dot(w, transpose(phi))
 savetxt('iok3834.txt', os, delimiter='\n')
 return os

Python 径向基 RBF 神经网络