python

超轻量级php框架startmvc

python中kmeans聚类实现代码

更新时间:2020-05-22 10:12:01 作者:startmvc
k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算

k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算法,k-means算法有本身的缺点,比如说k初始位置的选择,针对这个有不少人提出k-means++算法进行改进;另外一种是要对k大小的选择也没有很完善的理论,针对这个比较经典的理论是轮廓系数,二分聚类的算法确定k的大小,在最后还写了二分聚类算法的实现,代码主要参考机器学习实战那本书:


#encoding:utf-8 
''''' 
Created on 2015年9月21日 
@author: ZHOUMEIXU204 
''' 
 
 
path=u"D:\\Users\\zhoumeixu204\\Desktop\\python语言机器学习\\机器学习实战代码 python\\机器学习实战代码\\machinelearninginaction\\Ch10\\" 
import numpy as np 
def loadDataSet(fileName): #读取数据 
 dataMat=[] 
 fr=open(fileName) 
 for line in fr.readlines(): 
 curLine=line.strip().split('\t') 
 fltLine=map(float,curLine) 
 dataMat.append(fltLine) 
 return dataMat 
def distEclud(vecA,vecB): #计算距离 
 return np.sqrt(np.sum(np.power(vecA-vecB,2))) 
def randCent(dataSet,k): #构建镞质心 
 n=np.shape(dataSet)[1] 
 centroids=np.mat(np.zeros((k,n))) 
 for j in range(n): 
 minJ=np.min(dataSet[:,j]) 
 rangeJ=float(np.max(dataSet[:,j])-minJ) 
 centroids[:,j]=minJ+rangeJ*np.random.rand(k,1) 
 return centroids 
dataMat=np.mat(loadDataSet(path+'testSet.txt')) 
print(dataMat[:,0]) 
 
 
# 所有数都比-inf大 
# 所有数都比+inf小 
def kMeans(dataSet,k,distMeas=distEclud,createCent=randCent): 
 m=np.shape(dataSet)[0] 
 clusterAssment=np.mat(np.zeros((m,2))) 
 centroids=createCent(dataSet,k) 
 clusterChanged=True 
 while clusterChanged: 
 clusterChanged=False 
 for i in range(m): 
 minDist=np.inf;minIndex=-1 #np.inf表示无穷大 
 for j in range(k): 
 distJI=distMeas(centroids[j,:],dataSet[i,:]) 
 if distJI 
 minDist=distJI;minIndex=j 
 if clusterAssment[i,0]!=minIndex:clusterChanged=True 
 clusterAssment[i,:]=minIndex,minDist**2 
 print centroids 
 for cent in range(k): 
 ptsInClust=dataSet[np.nonzero(clusterAssment[:,0].A==cent)[0]] #[0]这里取0是指去除坐标索引值,结果会有两个 
 #np.nonzero函数,寻找非0元素的下标 nz=np.nonzero([1,2,3,0,0,4,0])结果为0,1,2 
 centroids[cent,:]=np.mean(ptsInClust,axis=0) 
 
 return centroids,clusterAssment 
myCentroids,clustAssing=kMeans(dataMat,4) 
print(myCentroids,clustAssing) 
 
#二分均值聚类(bisecting k-means) 
def biKmeans(dataSet,k,distMeas=distEclud): 
 m=np.shape(dataSet)[0] 
 clusterAssment=np.mat(np.zeros((m,2))) 
 centroid0=np.mean(dataSet,axis=0).tolist()[0] 
 centList=[centroid0] 
 for j in range(m): 
 clusterAssment[j,1]=distMeas(np.mat(centroid0),dataSet[j,:])**2 
 while (len(centList) 
 lowestSSE=np.Inf 
 for i in range(len(centList)): 
 ptsInCurrCluster=dataSet[np.nonzero(clusterAssment[:,0].A==i)[0],:] 
 centroidMat,splitClusAss=kMeans(ptsInCurrCluster,2,distMeas) 
 sseSplit=np.sum(splitClusAss[:,1]) 
 sseNotSplit=np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A!=i)[0],1]) 
 print "sseSplit, and notSplit:",sseSplit,sseNotSplit 
 if (sseSplit+sseNotSplit) 
 bestCenToSplit=i 
 bestNewCents=centroidMat 
 bestClustAss=splitClusAss.copy() 
 lowestSSE=sseSplit+sseNotSplit 
 bestClustAss[np.nonzero(bestClustAss[:,0].A==1)[0],0]=len(centList) 
 bestClustAss[np.nonzero(bestClustAss[:,0].A==0)[0],0]=bestCenToSplit 
 print "the bestCentToSplit is:",bestCenToSplit 
 print 'the len of bestClustAss is:',len(bestClustAss) 
 centList[bestCenToSplit]=bestNewCents[0,:] 
 centList.append(bestNewCents[1,:]) 
 clusterAssment[np.nonzero(clusterAssment[:,0].A==bestCenToSplit)[0],:]=bestClustAss 
 return centList,clusterAssment 
print(u"二分聚类分析结果开始") 
dataMat3=np.mat(loadDataSet(path+'testSet2.txt')) 
centList,myNewAssments=biKmeans(dataMat3, 3) 
print(centList) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python kmeans 聚类