python

超轻量级php框架startmvc

PyTorch CNN实战之MNIST手写数字识别示例

更新时间:2020-06-04 08:36:01 作者:startmvc
简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)是深度学习技术中极具代表的网络结构之一,在

简介

卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。

卷积神经网络CNN的结构一般包含这几个层:

  1. 输入层:用于数据的输入
  2. 卷积层:使用卷积核进行特征提取和特征映射
  3. 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
  4. 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
  5. 全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
  6. 输出层:用于输出结果

PyTorch实战

本文选用上篇的数据集MNIST手写数字识别实践CNN。


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

# Training settings
batch_size = 64

# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
 train=True,
 transform=transforms.ToTensor(),
 download=True)

test_dataset = datasets.MNIST(root='./data/',
 train=False,
 transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False)


class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 # 输入1通道,输出10通道,kernel 5*5
 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
 self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
 self.mp = nn.MaxPool2d(2)
 # fully connect
 self.fc = nn.Linear(320, 10)

 def forward(self, x):
 # in_size = 64
 in_size = x.size(0) # one batch
 # x: 64*10*12*12
 x = F.relu(self.mp(self.conv1(x)))
 # x: 64*20*4*4
 x = F.relu(self.mp(self.conv2(x)))
 # x: 64*320
 x = x.view(in_size, -1) # flatten the tensor
 # x: 64*10
 x = self.fc(x)
 return F.log_softmax(x)


model = Net()

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

def train(epoch):
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = Variable(data), Variable(target)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % 200 == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.data[0]))


def test():
 test_loss = 0
 correct = 0
 for data, target in test_loader:
 data, target = Variable(data, volatile=True), Variable(target)
 output = model(data)
 # sum up batch loss
 test_loss += F.nll_loss(output, target, size_average=False).data[0]
 # get the index of the max log-probability
 pred = output.data.max(1, keepdim=True)[1]
 correct += pred.eq(target.data.view_as(pred)).cpu().sum()

 test_loss /= len(test_loader.dataset)
 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))


for epoch in range(1, 10):
 train(epoch)
 test()

输出结果:

Train Epoch: 1 [0/60000 (0%)]   Loss: 2.315724 Train Epoch: 1 [12800/60000 (21%)]  Loss: 1.931551 Train Epoch: 1 [25600/60000 (43%)]  Loss: 0.733935 Train Epoch: 1 [38400/60000 (64%)]  Loss: 0.165043 Train Epoch: 1 [51200/60000 (85%)]  Loss: 0.235188

Test set: Average loss: 0.1935, Accuracy: 9421/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.333513 Train Epoch: 2 [12800/60000 (21%)]  Loss: 0.163156 Train Epoch: 2 [25600/60000 (43%)]  Loss: 0.213840 Train Epoch: 2 [38400/60000 (64%)]  Loss: 0.141114 Train Epoch: 2 [51200/60000 (85%)]  Loss: 0.128191

Test set: Average loss: 0.1180, Accuracy: 9645/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.206469 Train Epoch: 3 [12800/60000 (21%)]  Loss: 0.234443 Train Epoch: 3 [25600/60000 (43%)]  Loss: 0.061048 Train Epoch: 3 [38400/60000 (64%)]  Loss: 0.192217 Train Epoch: 3 [51200/60000 (85%)]  Loss: 0.089190

Test set: Average loss: 0.0938, Accuracy: 9723/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]   Loss: 0.086325 Train Epoch: 4 [12800/60000 (21%)]  Loss: 0.117741 Train Epoch: 4 [25600/60000 (43%)]  Loss: 0.188178 Train Epoch: 4 [38400/60000 (64%)]  Loss: 0.049807 Train Epoch: 4 [51200/60000 (85%)]  Loss: 0.174097

Test set: Average loss: 0.0743, Accuracy: 9767/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]   Loss: 0.063171 Train Epoch: 5 [12800/60000 (21%)]  Loss: 0.061265 Train Epoch: 5 [25600/60000 (43%)]  Loss: 0.103549 Train Epoch: 5 [38400/60000 (64%)]  Loss: 0.019137 Train Epoch: 5 [51200/60000 (85%)]  Loss: 0.067103

Test set: Average loss: 0.0720, Accuracy: 9781/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]   Loss: 0.069251 Train Epoch: 6 [12800/60000 (21%)]  Loss: 0.075502 Train Epoch: 6 [25600/60000 (43%)]  Loss: 0.052337 Train Epoch: 6 [38400/60000 (64%)]  Loss: 0.015375 Train Epoch: 6 [51200/60000 (85%)]  Loss: 0.028996

Test set: Average loss: 0.0694, Accuracy: 9783/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]   Loss: 0.171613 Train Epoch: 7 [12800/60000 (21%)]  Loss: 0.078520 Train Epoch: 7 [25600/60000 (43%)]  Loss: 0.149186 Train Epoch: 7 [38400/60000 (64%)]  Loss: 0.026692 Train Epoch: 7 [51200/60000 (85%)]  Loss: 0.108824

Test set: Average loss: 0.0672, Accuracy: 9793/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.029188 Train Epoch: 8 [12800/60000 (21%)]  Loss: 0.031202 Train Epoch: 8 [25600/60000 (43%)]  Loss: 0.194858 Train Epoch: 8 [38400/60000 (64%)]  Loss: 0.051497 Train Epoch: 8 [51200/60000 (85%)]  Loss: 0.024832

Test set: Average loss: 0.0535, Accuracy: 9837/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.026706 Train Epoch: 9 [12800/60000 (21%)]  Loss: 0.057807 Train Epoch: 9 [25600/60000 (43%)]  Loss: 0.065225 Train Epoch: 9 [38400/60000 (64%)]  Loss: 0.037004 Train Epoch: 9 [51200/60000 (85%)]  Loss: 0.057822

Test set: Average loss: 0.0538, Accuracy: 9829/10000 (98%)

Process finished with exit code 0

参考:https://github.com/hunkim/PyTorchZeroToAll

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

mnist手写数字识别 手写数字识别 python cnn 手写数字识别