python

超轻量级php框架startmvc

python脚本实现验证码识别

更新时间:2020-06-05 12:48:01 作者:startmvc
最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三

最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三四百张左右。好吧,其实是验证码太简单。下面就是要识别的验证码。

我主要用的是Python中的PIL库。

首先进行二值化处理。由于图片中的噪点颜色比较浅,所以可以设定一个阈值直接过滤掉。这里我设置的阈值是150,像素大于150的赋值为1,小于的赋为0.


def set_table(a):
 table = [] 
 for i in range(256):
 if i < a:
 table.append(0)
 else:
 table.append(1)
 return table

img = Image.open("D:/python/单个字体/A"+str(i)+".jpg")
pix = img.load()

#将图片进行灰度化处理
img1 = img.convert('L')

#阈值为150,参数为1,将图片进行二值化处理
img2 = img1.point(set_table(150),'1') 

处理后的图片如下。

阈值不同产生的不同效果:

接下来对图片进行分割。遍历图片中所有像素点,计算每一列像素为0的点的个数(jd)。对于相邻两列,若其中一列jd=0,而另一列jd!=0,则可以认为这一列是验证码中字符边界,由此对验证码进行分割。这样分割能达到比较好的效果,分割后得到的字符图片几乎能与模板完全相同。


(Width,Height) = img2.size
pix2 = img2.load()
x0 = []
y0 = []

for x in range(1,Width):
 jd = 0
 # print x
 for y in range(1,Height):
 # print y
 if pix2[x,y] == 0:
 jd+=1
 y0.append(jd)
 if jd > 0:
 x0.append(x)

#分别对各个字符边界进行判断,这里只举出一个 
for a in range(1,Width):
 if (y0[a] != 0)&(y0[a+1] != 0):
 sta1 = a+1
 break

分割完成后,对于识别,目前有几种方法。可以遍历图片的每一个像素点,获取像素值,得到一个字符串,将该字符串与模板的字符串进行比较,计算汉明距离或者编辑距离(即两个字符串的差异度),可用Python-Levenshtein库来实现。

我采用的是比较特征向量来进行识别的。首先设定了4个竖直特征向量,分别计算第0、2、4、6列每一列像素值为0的点的个数,与模板进行比较,若小于阈值则认为该字符与模板相同。为了提高识别率,如果通过竖直特征向量未能识别成功,引入水平特征向量继续识别,原理与竖直特征向量相同。

另外,还可以通过局部特征进行识别。这对于加入了旋转干扰的验证码有很好效果。由于我写的脚本识别率已经达到了要求,所以并没有用到这个。

最后的结果是这样的:

最终在模板库只有25条的情况下,识别率在92%左右(总共测试了一万六千张验证码)。好吧,只能说验证码太简单。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python 验证码 识别