__author__='Administrator'importnumpyasnpimportcv2mri_img=np.load('mri_img.npy')#normalizationmri_max=np.amax(mri_img)mr
__author__ = 'Administrator'
import numpy as np
import cv2
mri_img = np.load('mri_img.npy')
# normalization
mri_max = np.amax(mri_img)
mri_min = np.amin(mri_img)
mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255
mri_img = mri_img.astype('uint8')
r, c, h = mri_img.shape
for k in range(h):
temp = mri_img[:,:,k]
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
img = clahe.apply(temp)
cv2.imshow('mri', np.concatenate([temp,img], 1))
cv2.waitKey(0)
均衡化前、后对比效果
以上这篇Python cv2 图像自适应灰度直方图均衡化处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
Python cv2 图像 灰度