python

超轻量级php框架startmvc

Python sklearn KFold 生成交叉验证数据集的方法

更新时间:2020-06-15 12:54:01 作者:startmvc
源起:1.我要做交叉验证,需要每个训练集和测试集都保持相同的样本分布比例,直接用skle

源起:

1.我要做交叉验证,需要每个训练集和测试集都保持相同的样本分布比例,直接用sklearn提供的KFold并不能满足这个需求。

2.将生成的交叉验证数据集保存成CSV文件,而不是直接用sklearn训练分类模型。

3.在编码过程中有一的误区需要注意:

这个sklearn官方给出的文档


>>> import numpy as np
>>> from sklearn.model_selection import KFold
 
>>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

我之前犯的一个错误是将train,test理解成原数据集分割成子数据集之后的子数据集索引。而实际上,它就是原始数据集本身的样本索引。

源码:


# -*- coding:utf-8 -*-
# 得到交叉验证数据集,保存成CSV文件
# 输入是一个包含正常恶意标签的完整数据集,在读数据的时候分开保存到datasetBenign,datasetMalicious
# 分别对两个数据集进行KFold,最后合并保存
 
from sklearn.model_selection import KFold
import csv
 
def writeInFile(benignKFTrain, benignKFTest, maliciousKFTrain, maliciousKFTest, i, datasetBenign, datasetMalicious):
 newTrainFilePath = "E:\\hadoopExperimentResult\\5KFold\\AllDataSetIIR10\\dataset\\ImbalancedAllTraffic-train-%s.csv" % i
 newTestFilePath = "E:\\hadoopExperimentResult\\5KFold\\AllDataSetIIR10\\dataset\\IImbalancedAllTraffic-test-%s.csv" % i
 newTrainFile = open(newTrainFilePath, "wb")# wb 为防止空行
 newTestFile = open(newTestFilePath, "wb")
 writerTrain = csv.writer(newTrainFile)
 writerTest = csv.writer(newTestFile)
 for index in benignKFTrain:
 writerTrain.writerow(datasetBenign[index])
 for index in benignKFTest:
 writerTest.writerow(datasetBenign[index])
 for index in maliciousKFTrain:
 writerTrain.writerow(datasetMalicious[index])
 for index in maliciousKFTest:
 writerTest.writerow(datasetMalicious[index])
 newTrainFile.close()
 newTestFile.close()
 
 
def getKFoldDataSet(datasetPath):
 # CSV读取文件
 # 开始从文件中读取全部的数据集
 datasetFile = file(datasetPath, 'rb')
 datasetBenign = []
 datasetMalicious = []
 readerDataset = csv.reader(datasetFile)
 for line in readerDataset:
 if len(line) > 1:
 curLine = []
 curLine.append(float(line[0]))
 curLine.append(float(line[1]))
 curLine.append(float(line[2]))
 curLine.append(float(line[3]))
 curLine.append(float(line[4]))
 curLine.append(float(line[5]))
 curLine.append(float(line[6]))
 curLine.append(line[7])
 if line[7] == "benign":
 datasetBenign.append(curLine)
 else:
 datasetMalicious.append(curLine)
 
 # 交叉验证分割数据集
 K = 5
 kf = KFold(n_splits=K)
 benignKFTrain = []; benignKFTest = []
 for train,test in kf.split(datasetBenign):
 benignKFTrain.append(train)
 benignKFTest.append(test)
 maliciousKFTrain=[]; maliciousKFTest=[]
 for train,test in kf.split(datasetMalicious):
 maliciousKFTrain.append(train)
 maliciousKFTest.append(test)
 for i in range(K):
 print "======================== "+ str(i)+ " ========================"
 print benignKFTrain[i], benignKFTest[i]
 print maliciousKFTrain[i],maliciousKFTest[i]
 writeInFile(benignKFTrain[i], benignKFTest[i], maliciousKFTrain[i], maliciousKFTest[i], i, datasetBenign,
 datasetMalicious)
 
 datasetFile.close()
 
 
if __name__ == "__main__":
 
 getKFoldDataSet(r"E:\hadoopExperimentResult\5KFold\AllDataSetIIR10\dataset\ImbalancedAllTraffic-10.csv")

以上这篇Python sklearn KFold 生成交叉验证数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Python sklearn KFold