python

超轻量级php框架startmvc

python矩阵/字典实现最短路径算法

更新时间:2020-06-21 00:54:01 作者:startmvc
前言:好像感觉各种博客的最短路径python实现都花里胡哨的?输出不明显,唉,可能是因为

前言:好像感觉各种博客的最短路径python实现都花里胡哨的?输出不明显,唉,可能是因为不想读别人的代码吧(明明自己学过离散)。然后可能有些人是用字典实现的?的确字典的话,比较省空间。改天,也用字典试下。先贴个图吧。

然后再贴代码:


_=inf=999999#inf
 
def Dijkstra_all_minpath(start,matrix):
 length=len(matrix)#该图的节点数
 path_array=[]
 temp_array=[]
 path_array.extend(matrix[start])#深复制
 temp_array.extend(matrix[start])#深复制
 temp_array[start] = inf#临时数组会把处理过的节点的值变成inf,表示不是最小权值的节点了
 already_traversal=[start]#start已处理
 path_parent=[start]*length#用于画路径,记录此路径中该节点的父节点
 while(len(already_traversal)<length):
 i= temp_array.index(min(temp_array))#找最小权值的节点的坐标
 temp_array[i]=inf
 path=[]#用于画路径
 path.append(str(i))
 k=i
 while(path_parent[k]!=start):#找该节点的父节点添加到path,直到父节点是start
 path.append(str(path_parent[k]))
 k=path_parent[k]
 path.append(str(start))
 path.reverse()#path反序产生路径
 print(str(i)+':','->'.join(path))#打印路径
 already_traversal.append(i)#该索引已经处理了
 for j in range(length):#这个不用多说了吧
 if j not in already_traversal:
 if (path_array[i]+matrix[i][j])<path_array[j]:
 path_array[j] = temp_array[j] =path_array[i]+matrix[i][j]
 path_parent[j]=i#说明父节点是i
 return path_array
 
#领接矩阵
adjacency_matrix=[[0,10,_,30,100],
 [10,0,50,_,_],
 [_,50,0,20,10],
 [30,_,20,0,60],
 [100,_,10,60,0]
 ]
print(Dijkstra_all_minpath(4,adjacency_matrix))

然后输出:

2: 4->2 3: 4->2->3 0: 4->2->3->0 1: 4->2->1 [60, 60, 10, 30, 0]

主要是这样输出的话比较好看,然后这样算是直接算一个点到所有点的最短路径吧。那么写下字典实现吧


def Dijkstra_all_minpath_for_graph(start,graph):
 inf = 999999 # inf
 length=len(graph)
 path_graph={k:inf for k in graph.keys()}
 already_traversal=set()
 path_graph[start]=0
 min_node=start#初始化最小权值点
 already_traversal.add(min_node)#把找到的最小节点添加进去
 path_parent={k:start for k in graph.keys()}
 while(len(already_traversal)<=length):
 p = min_node
 if p!=start:
 path = []
 path.append(str(p))
 while (path_parent[p] != start):#找该节点的父节点添加到path,直到父节点是start
 path.append(str(path_parent[p]))
 p=path_parent[p]
 path.append(str(start))
 path.reverse()#反序
 print(str(min_node) + ':', '->'.join(path))#打印
 if(len(already_traversal)==length):break
 for k in path_graph.keys():#更新距离
 if k not in already_traversal:
 if k in graph[min_node].keys() and (path_graph[min_node]+graph[min_node][k])<path_graph[k]:
 path_graph[k]=path_graph[min_node]+graph[min_node][k]
 path_parent[k]=min_node
 min_value=inf
 for k in path_graph.keys():#找最小节点
 if k not in already_traversal:
 if path_graph[k]<min_value:
 min_node=k
 min_value=path_graph[k]
 already_traversal.add(min_node)#把找到最小节点添加进去
 return path_graph
adjacency_graph={0:{1:10,3:30,4:100},
 1:{0:10,2:50},
 2:{1:50,3:20,4:10},
 3:{0:30,2:20,4:60},
 4:{0:100,2:10,3:60}}
print(Dijkstra_all_minpath_for_graph(4,adjacency_graph))

输出:

2: 4->2 3: 4->2->3 0: 4->2->3->0 1: 4->2->1 {0: 60, 1: 60, 2: 10, 3: 30, 4: 0}

还行吧,有时间再看看networkx这个库怎么说。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python 最短路径