python

超轻量级php框架startmvc

python装饰器简介---这一篇也许就够了(推荐)

更新时间:2020-06-29 05:00:01 作者:startmvc
Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序

Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼。

装饰器引入

初期及问题诞生

假如现在在一个公司,有A B C三个业务部门,还有S一个基础服务部门,目前呢,S部门提供了两个函数,供其他部门调用,函数如下:


def f1():
 print('f1 called')


def f2():
 print('f2 called')

在初期,其他部门这样调用是没有问题的,随着公司业务的发展,现在S部门需要对函数调用假如权限验证,如果有权限的话,才能进行调用,否则调用失败。考虑一下,如果是我们,该怎么做呢?

方案集合

  1. 让调用方也就是ABC部门在调用的时候,先主动进行权限验证
  2. S部门在对外提供的函数中,首先进行权限认证,然后再进行真正的函数操作

问题

  1. 方案一,将本不该暴露给外层的权限认证,暴露在使用方面前,同时如果有多个部门呢,要每个部门每个人都要周知到,你还不缺定别人一定会这么做,不靠谱。。。
  2. 方案二,看似看行,可是当S部门对外提供更多的需要进行权限验证方法时,每个函数都要调用权限验证,同样也实在费劲,不利于代码的维护性和扩展性

那么,有没有一种方法能够遵循代码的开放闭合原则,来完美的解决此问题呢?

装饰器引入

答案肯定是有的,不然真的是弱爆了。先看代码


def w1(func):
 def inner():
 print('...验证权限...')
 func()

 return inner


@w1
def f1():
 print('f1 called')


@w1
def f2():
 print('f2 called')


f1()
f2()

输出结果为

...验证权限... f1 called ...验证权限... f2 called

可以通过代码及输出看到,在调用f1 f2 函数时,成功进行了权限验证,那么是怎么做到的呢?其实这里就使用到了装饰器,通过定义一个闭包函数w1,在我们调用函数上通过关键词@w1,这样就对f1 f2函数完成了装饰。

装饰器原理

首先,开看我们的装饰器函数w1,该函数接收一个参数func,其实就是接收一个方法名,w1内部又定义一个函数inner,在inner函数中增加权限校验,并在验证完权限后调用传进来的参数func,同时w1的返回值为内部函数inner,其实就是一个闭包函数。

然后,再来看一下,在f1上增加@w1,那这是什么意思呢?当python解释器执行到这句话的时候,会去调用w1函数,同时将被装饰的函数名作为参数传入(此时为f1),根据闭包一文分析,在执行w1函数的时候,此时直接把inner函数返回了,同时把它赋值给f1,此时的f1已经不是未加装饰时的f1了,而是指向了w1.inner函数地址。

接下来,在调用f1()的时候,其实调用的是w1.inner函数,那么此时就会先执行权限验证,然后再调用原来的f1(),该处的f1就是通过装饰传进来的参数f1。

这样下来,就完成了对f1的装饰,实现了权限验证。

装饰器知识点

执行时机

了解了装饰器的原理后,那么它的执行时机是什么样呢,接下来就来看一下。 国际惯例,先上代码


def w1(fun):
 print('...装饰器开始装饰...')

 def inner():
 print('...验证权限...')
 fun()

 return inner


@w1
def test():
 print('test')

test()

输出结果为

...装饰器开始装饰... ...验证权限... test

由此可以发现,当python解释器执行到@w1时,就开始进行装饰了,相当于执行了如下代码:


test = w1(test)

两个装饰器执行流程和装饰结果

当有两个或两个以上装饰器装饰一个函数时,那么执行流程和装饰结果是什么样的呢?同样,还是以代码来说明问题。


def makeBold(fun):
 print('----a----')

 def inner():
 print('----1----')
 return '<b>' + fun() + '</b>'

 return inner


def makeItalic(fun):
 print('----b----')

 def inner():
 print('----2----')
 return '<i>' + fun() + '</i>'

 return inner


@makeBold
@makeItalic
def test():
 print('----c----')
 print('----3----')
 return 'hello python decorator'


ret = test()
print(ret)

输出结果:

----b---- ----a---- ----1---- ----2---- ----c---- ----3---- <b><i>hello python decorator</i></b>

可以发现,先用第二个装饰器(makeItalic)进行装饰,接着再用第一个装饰器(makeBold)进行装饰,而在调用过程中,先执行第一个装饰器(makeBold),接着再执行第二个装饰器(makeItalic)。

为什么呢,分两步来分析一下。

  1. 装饰时机 通过上面装饰时机的介绍,我们可以知道,在执行到@makeBold的时候,需要对下面的函数进行装饰,此时解释器继续往下走,发现并不是一个函数名,而又是一个装饰器,这时候,@makeBold装饰器暂停执行,而接着执行接下来的装饰器@makeItalic,接着把test函数名传入装饰器函数,从而打印'b',在makeItalic装饰完后,此时的test指向makeItalic的inner函数地址,这时候有返回来执行@makeBold,接着把新test传入makeBold装饰器函数中,因此打印了'a'。
  2. 在调用test函数的时候,根据上述分析,此时test指向makeBold.inner函数,因此会先打印‘1‘,接下来,在调用fun()的时候,其实是调用的makeItalic.inner()函数,所以打印‘2‘,在makeItalic.inner中,调用的fun其实才是我们最原声的test函数,所以打印原test函数中的‘c‘,‘3‘,所以在一层层调完之后,打印的结果为<b><i>hello python decorator</i></b> 。

对无参函数进行装饰

上面例子中的f1 f2都是对无参函数的装饰,不再单独举例

对有参函数进行装饰

在使用中,有的函数可能会带有参数,那么这种如何处理呢?

代码优先:


def w_say(fun):
 """
 如果原函数有参数,那闭包函数必须保持参数个数一致,并且将参数传递给原方法
 """

 def inner(name):
 """
 如果被装饰的函数有行参,那么闭包函数必须有参数
 :param name:
 :return:
 """
 print('say inner called')
 fun(name)

 return inner


@w_say
def hello(name):
 print('hello ' + name)


hello('wangcai')

输出结果为:

say inner called hello wangcai

具体说明代码注释已经有了,就不再单独说明了。 此时,也许你就会问了,那是一个参数的,如果多个或者不定长参数呢,该如何处理呢?看看下面的代码你就秒懂了。


def w_add(func):
 def inner(*args, **kwargs):
 print('add inner called')
 func(*args, **kwargs)

 return inner


@w_add
def add(a, b):
 print('%d + %d = %d' % (a, b, a + b))


@w_add
def add2(a, b, c):
 print('%d + %d + %d = %d' % (a, b, c, a + b + c))


add(2, 4)
add2(2, 4, 6)

输出结果为:

add inner called 2 + 4 = 6 add inner called 2 + 4 + 6 = 12

利用python的可变参数轻松实现装饰带参数的函数。

对带返回值的函数进行装饰

下面对有返回值的函数进行装饰,按照之前的写法,代码是这样的


def w_test(func):
 def inner():
 print('w_test inner called start')
 func()
 print('w_test inner called end')
 return inner


@w_test
def test():
 print('this is test fun')
 return 'hello'


ret = test()
print('ret value is %s' % ret)

输出结果为:

w_test inner called start this is test fun w_test inner called end ret value is None

可以发现,此时,并没有输出test函数的‘hello',而是None,那是为什么呢,可以发现,在inner函数中对test进行了调用,但是没有接受不了返回值,也没有进行返回,那么默认就是None了,知道了原因,那么来修改一下代码:


def w_test(func):
 def inner():
 print('w_test inner called start')
 str = func()
 print('w_test inner called end')
 return str

 return inner


@w_test
def test():
 print('this is test fun')
 return 'hello'


ret = test()
print('ret value is %s' % ret)

输出结果:

w_test inner called start this is test fun w_test inner called end ret value is hello

这样就达到预期,完成对带返回值参数的函数进行装饰。

带参数的装饰器

介绍了对带参数的函数和有返回值的函数进行装饰,那么有没有带参数的装饰器呢,如果有的话,又有什么用呢? 答案肯定是有的,接下来通过代码来看一下吧。


def func_args(pre='xiaoqiang'):
 def w_test_log(func):
 def inner():
 print('...记录日志...visitor is %s' % pre)
 func()

 return inner

 return w_test_log


# 带有参数的装饰器能够起到在运行时,有不同的功能

# 先执行func_args('wangcai'),返回w_test_log函数的引用
# @w_test_log
# 使用@w_test_log对test_log进行装饰
@func_args('wangcai')
def test_log():
 print('this is test log')


test_log()

输出结果为:

...记录日志...visitor is wangcai this is test log

简单理解,带参数的装饰器就是在原闭包的基础上又加了一层闭包,通过外层函数func_args的返回值w_test_log就看出来了,具体执行流程在注释里已经说明了。 好处就是可以在运行时,针对不同的参数做不同的应用功能处理。

通用装饰器

介绍了这么多,在实际应用中,如果针对没个类别的函数都要写一个装饰器的话,估计就累死了,那么有没有通用万能装饰器呢,答案肯定是有的,废话不多说,直接上代码。


def w_test(func):
 def inner(*args, **kwargs):
 ret = func(*args, **kwargs)
 return ret

 return inner


@w_test
def test():
 print('test called')


@w_test
def test1():
 print('test1 called')
 return 'python'


@w_test
def test2(a):
 print('test2 called and value is %d ' % a)


test()
test1()
test2(9)

输出结果为:

test called test1 called test2 called and value is 9

把上面几种示例结合起来,就完成了通用装饰器的功能,原理都同上,就不过多废话了。

类装饰器

装饰器函数其实是一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。 在python中,一般callable对象都是函数,但是也有例外。比如只要某个对象重写了call方法,那么这个对象就是callable的。 当创建一个对象后,直接去执行这个对象,那么是会抛出异常的,因为他不是callable,无法直接执行,但进行修改后,就可以直接执行调用了,如下


class Test(object):
 def __call__(self, *args, **kwargs):
 print('call called')


t = Test()
print(t())

输出为:

call called

下面,引入正题,看一下如何用类装饰函数。


class Test(object):
 def __init__(self, func):
 print('test init')
 print('func name is %s ' % func.__name__)
 self.__func = func

 def __call__(self, *args, **kwargs):
 print('装饰器中的功能')
 self.__func()


@Test
def test():
 print('this is test func')


test()

输出结果为:

test init func name is test 装饰器中的功能 this is test func

和之前的原理一样,当python解释器执行到到@Test时,会把当前test函数作为参数传入Test对象,调用init方法,同时将test函数指向创建的Test对象,那么在接下来执行test()的时候,其实就是直接对创建的对象进行调用,执行其call方法。

好了,到目前为止,基本把python装饰器及相关知识点讲完了,如有问题,欢迎指出哈~

以上所述是小编给大家介绍的python装饰器简介详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

python装饰器 python装饰器用法