本文实例为大家分享了python使用KNN算法识别手写数字的具体代码,供大家参考,具体内容如
本文实例为大家分享了python使用KNN算法识别手写数字的具体代码,供大家参考,具体内容如下
# -*- coding: utf-8 -*-
#pip install numpy
import os
import os.path
from numpy import *
import operator
import time
from os import listdir
"""
描述:
KNN算法实现分类器
参数:
inputPoint:测试集
dataSet:训练集
labels:类别标签
k:K个邻居
返回值:
该测试数据的类别
"""
def classify(inputPoint,dataSet,labels,k):
dataSetSize = dataSet.shape[0] #已知分类的数据集(训练集)的行数
#先tile函数将输入点拓展成与训练集相同维数的矩阵,再计算欧氏距离
diffMat = tile(inputPoint,(dataSetSize,1))-dataSet #样本与训练集的差值矩阵
# print(inputPoint);
sqDiffMat = diffMat ** 2 #sqDiffMat 的数据类型是nump提供的ndarray,这不是矩阵的平方,而是每个元素变成原来的平方。
sqDistances = sqDiffMat.sum(axis=1) #计算每一行上元素的和
# print(sqDistances);
distances = sqDistances ** 0.5 #开方得到欧拉距离矩阵
# print(distances);
sortedDistIndicies = distances.argsort() #按distances中元素进行升序排序后得到的对应下标的列表,argsort函数返回的是数组值从小到大的索引值
# print(sortedDistIndicies);
# classCount数据类型是这样的{0: 2, 1: 2},字典key:value
classCount = {}
# 选择距离最小的k个点
for i in range(k):
voteIlabel = labels[ sortedDistIndicies[i] ]
# print(voteIlabel)
# 类别数加1
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
print(classCount)# {1: 1, 7: 2}
#按classCount字典的第2个元素(即类别出现的次数)从大到小排序
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
print(sortedClassCount)# [(7, 2), (1, 1)]
return sortedClassCount[0][0]
"""
描述:
读取指定文件名的文本数据,构建一个矩阵
参数:
文本文件名称
返回值:
一个单行矩阵
"""
def img2vector(filename):
returnVect = []
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect.append(int(lineStr[j]))
return returnVect
"""
描述:
从文件名中解析分类数字,比如由0_0.txt得知这个文本代表的数字分类是0
参数:
文本文件名称
返回值:
一个代表分类的数字
"""
def classnumCut(fileName):
fileStr = fileName.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
return classNumStr
"""
描述:
构建训练集数据向量,及对应分类标签向量
参数:
无
返回值:
hwLabels:分类标签矩阵
trainingMat:训练数据集矩阵
"""
def trainingDataSet():
hwLabels = []
trainingFileList = listdir('trainingDigits') #获取目录内容
m = len(trainingFileList)
# zeros返回全部是0的矩阵,参数是行和列
trainingMat = zeros((m,1024)) #m维向量的训练集
for i in range(m):
# print (i);
fileNameStr = trainingFileList[i]
hwLabels.append(classnumCut(fileNameStr))
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
return hwLabels,trainingMat
"""
描述:
主函数,最终打印识别了多少个数字以及识别的错误率
参数:
无
返回值:
无
"""
def handwritingTest():
"""
hwLabels,trainingMat 是标签和训练数据,
hwLabels 是一个一维矩阵,代表每个文本对应的标签(即文本所代表的数字类型)
trainingMat是一个多维矩阵,每一行都代表一个文本的数据,每行有1024个数字(0或1)
"""
hwLabels,trainingMat = trainingDataSet() #构建训练集
testFileList = listdir('testDigits') #获取测试集
errorCount = 0.0 #错误数
mTest = len(testFileList) #测试集总样本数
t1 = time.time()
for i in range(mTest):
fileNameStr = testFileList[i]
classNumStr = classnumCut(fileNameStr)
# img2vector返回一个文本对应的一维矩阵,1024个0或者1
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
#调用knn算法进行测试
classifierResult = classify(vectorUnderTest, trainingMat, hwLabels, 3)
# 打印测试出来的结果和真正的结果,看看是否匹配
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
# 如果测试出来的值和原值不相等,errorCount+1
if (classifierResult != classNumStr):
errorCount += 1.0
print("\nthe total number of tests is: %d" % mTest) #输出测试总样本数
print ("the total number of errors is: %d" % errorCount ) #输出测试错误样本数
print ("the total error rate is: %f" % (errorCount/float(mTest))) #输出错误率
t2 = time.time()
print ("Cost time: %.2fmin, %.4fs."%((t2-t1)//60,(t2-t1)%60) ) #测试耗时
"""
描述:
指定handwritingTest()为主函数
"""
if __name__ == "__main__":
handwritingTest()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
python KNN识别手写数字 python识别手写数字 python KNN识别数字