python

超轻量级php框架startmvc

Python使用sklearn库实现的各种分类算法简单应用小结

更新时间:2020-07-11 18:30:01 作者:startmvc
本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,

本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下:

KNN


from sklearn.neighbors import KNeighborsClassifier
import numpy as np
def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
 model = KNeighborsClassifier(n_neighbors=10)#默认为5
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted

SVM


from sklearn.svm import SVC
def SVM(X,y,XX):
 model = SVC(c=5.0)
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted

SVM Classifier using cross validation


def svm_cross_validation(train_x, train_y):
 from sklearn.grid_search import GridSearchCV
 from sklearn.svm import SVC
 model = SVC(kernel='rbf', probability=True)
 param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
 grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
 grid_search.fit(train_x, train_y)
 best_parameters = grid_search.best_estimator_.get_params()
 for para, val in list(best_parameters.items()):
 print(para, val)
 model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
 model.fit(train_x, train_y)
 return model

LR


from sklearn.linear_model import LogisticRegression
def LR(X,y,XX):
 model = LogisticRegression()
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted

决策树(CART)


from sklearn.tree import DecisionTreeClassifier
def CTRA(X,y,XX):
 model = DecisionTreeClassifier()
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted

随机森林


from sklearn.ensemble import RandomForestClassifier
def CTRA(X,y,XX):
 model = RandomForestClassifier()
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted

GBDT(Gradient Boosting Decision Tree)


from sklearn.ensemble import GradientBoostingClassifier
def CTRA(X,y,XX):
 model = GradientBoostingClassifier()
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted

朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。


from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
def GNB(X,y,XX):
 model =GaussianNB()
 model.fit(X,y)
 predicted = model.predict(XX)
 return predicted
def MNB(X,y,XX):
 model = MultinomialNB()
 model.fit(X,y)
 predicted = model.predict(XX
 return predicted
def BNB(X,y,XX):
 model = BernoulliNB()
 model.fit(X,y)
 predicted = model.predict(XX
 return predicted

Python sklearn库 分类算法