python

超轻量级php框架startmvc

Python绘制频率分布直方图的示例

更新时间:2020-07-12 10:06:01 作者:startmvc
项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样

项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这里记录下来。还是Python大法好,代码简洁不拖沓~

如果数据取值的范围跨度不大,可以使用等宽区间来展示直方图,这也是最常见的一种;如果数据取值范围比较野,也可以自定义区间端点,绘制图像,下面分两种情况展示

1. 区间长度相同绘制直方图


#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')


# 按照固定区间长度绘制频率分布直方图
# bins_interval 区间的长度
# margin 设定的左边和右边空留的大小
def probability_distribution(data, bins_interval=1, margin=1):
 bins = range(min(data), max(data) + bins_interval - 1, bins_interval)
 print(len(bins))
 for i in range(0, len(bins)):
 print(bins[i])
 plt.xlim(min(data) - margin, max(data) + margin)
 plt.title("probability-distribution")
 plt.xlabel('Interval')
 plt.ylabel('Probability')
 plt.hist(x=data, bins=bins, histtype='bar', color=['r'])
 plt.show()

2. 区间长度不同绘制直方图


#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc'

# 自己给定区间,小于区间左端点和大于区间右端点的统一做处理,对于数据分布不均很的情况处理较友好
# bins 自己设定的区间数值列表
# margin 设定的左边和右边空留的大小
# label 右上方显示的图例文字
"""e
 import numpy as np
 data = np.random.normal(0, 1, 1000)
 bins = np.arange(-5, 5, 0.1)
 probability_distribution_extend(data=data, bins=bins)
"""
def probability_distribution_extend(data, bins, margin=1, label='Distribution'):
 bins = sorted(bins)
 length = len(bins)
 intervals = np.zeros(length+1)
 for value in data:
 i = 0
 while i < length and value >= bins[i]:
 i += 1
 intervals[i] += 1
 intervals = intervals / float(len(data))
 plt.xlim(min(bins) - margin, max(bins) + margin)
 bins.insert(0, -999)
 plt.title("probability-distribution")
 plt.xlabel('Interval')
 plt.ylabel('Probability')
 plt.bar(bins, intervals, color=['r'], label=label)
 plt.legend()
 plt.show()

Case示例


if __name__ == '__main__':
 data = [1,4,6,7,8,9,11,11,12,12,13,13,16,17,18,22,25]
 probability_distribution(data=data, bins_interval=5,margin=0)

效果如下图

以上这篇Python绘制频率分布直方图的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Python 频率分布 直方图