python

超轻量级php框架startmvc

python elasticsearch从创建索引到写入数据的全过程

更新时间:2020-07-20 17:12:01 作者:startmvc
pythonelasticsearch从创建索引到写入数据创建索引fromelasticsearchimportElasticsearches=Elasticsearch('192.1

python elasticsearch从创建索引到写入数据

创建索引


from elasticsearch import Elasticsearch
es = Elasticsearch('192.168.1.1:9200')
mappings = {
 "mappings": {
 "type_doc_test": { #type_doc_test为doc_type
 "properties": {
 "id": {
 "type": "long",
 "index": "false"
 },
 "serial": {
 "type": "keyword", # keyword不会进行分词,text会分词
 "index": "false" # 不建索引
 },
 #tags可以存json格式,访问tags.content
 "tags": {
 "type": "object",
 "properties": {
 "content": {"type": "keyword", "index": True},
 "dominant_color_name": {"type": "keyword", "index": True},
 "skill": {"type": "keyword", "index": True},
 }
 },
 "hasTag": {
 "type": "long",
 "index": True
 },
 "status": {
 "type": "long",
 "index": True
 },
 "createTime": {
 "type": "date",
 "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
 },
 "updateTime": {
 "type": "date",
 "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
 }
 }
 }
 }
 }
res = es.indices.create(index = 'index_test',body =mappings)

通过以上代码即可创建es索引

写入一条数据

写入数据需要根据 创建的es索引类型对应的数据结构写入:


from elasticsearch import Elasticsearch
es = Elasticsearch('192.168.1.1:9200')
action ={
 "id": "1111122222",
 "serial":"版本",
 #以下tags.content是错误的写法
 #"tags.content" :"标签2",
 #"tags.dominant_color_name": "域名的颜色黄色",
 #正确的写法如下:
 "tags":{"content":"标签3","dominant_color_name": "域名的颜色黄色"},
 #按照字典的格式写入,如果用上面的那种写法,会直接写成一个tags.content字段。
 #而不是在tags中content添加数据,这点需要注意
 "tags.skill":"分类信息",
 "hasTag":"123",
 "status":"11",
 "createTime" :"2018-2-2",
 "updateTime":"2018-2-3",
 }
es.index(index="index_test",doc_type="doc_type_test",body = action)

即可写入一条数据

错误的写入

这里写图片描述

正确的写入

这里写图片描述

写入多条数据


from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
es = Elasticsearch('192.168.1.1:9200')
ACTIONS = []
action1 ={
 "_index": "indes_test",
 "_type": "doc_type_test",
 "_id":"bSlegGUBmJ2C8ZCSC1R1",
 "_source":{
 "id": "1111122222",
 "serial":"版本",
 "tags.content" :"标签2",
 "tags.dominant_color_name": "域名的颜色黄色",
 "tags.skill":"分类信息",
 "hasTag":"123",
 "status":"11",
 "createTime" :"2018-2-2",
 "updateTime":"2018-2-3",
 }
 }
action2 ={
 "_index": "indes_test",
 "_type": "doc_type_test",
 "_id":"bSlegGUBmJ2C8ZCSC1R2",
 "_source":{
 "id": "1111122222",
 "serial":"版本",
 "tags.content" :"标签2",
 "tags.dominant_color_name": "域名的颜色黄色",
 "tags.skill":"分类信息",
 "hasTag":"123",
 "status":"11",
 "createTime" :"2018-2-2",
 "updateTime":"2018-2-3",
 }
 }
ACTIONS.append(action1)
ACTIONS.append(action2)
res,_ =bulk(es, ACTIONS, index="indes_test", raise_on_error=True)
print(res)

这个方式是手动指定了id,如果把”_id”这个参数去掉即可自动生成id数据. 如下:


action2 ={
 "_index": "indes_test",
 "_type": "doc_type_test",
 "_source":{
 "id": "1111122222",
 "serial":"版本",
 "tags.content" :"标签2",
 "tags.dominant_color_name": "域名的颜色黄色",
 "tags.skill":"分类信息",
 "hasTag":"123",
 "status":"11",
 "createTime" :"2018-2-2",
 "updateTime":"2018-2-3",
 }
 }

删除一条数据


from elasticsearch import Elasticsearch
es = Elasticsearch('192.168.1.1:9200')
res = es.delete(index="index_test",doc_type="doc_type_test", id ="bSlegGUBmJ2C8ZCSC1R1")
print(res)

直接替换id的即可删除所需的id

查询一条数据


from elasticsearch import Elasticsearch
es = Elasticsearch('192.168.1.1:9200')
res = es.get(index="index_test",doc_type="doc_type_test", id ="bSlegGUBmJ2C8ZCSC1R2")
print(res)

直接替换id的即可查询所需的id

查询所有数据


from elasticsearch import Elasticsearch

es = Elasticsearch('192.168.1.1:9200')

res = es.search(index="index_test",doc_type="doc_type_test")
print(res)
print(res['hits']['hits'])

通过['hits']参数,可以解析出查询数据的详细内容

根据关键词查找


from elasticsearch import Elasticsearch
es = Elasticsearch('192.168.1.1:9200')
doc = {
 "query": {
 "match": {
 "_id": "aSlZgGUBmJ2C8ZCSPVRO"
 }
 }
 }
res = es.search(index="index_test",doc_type="doc_type_test",body=doc)
print(res)

总结

所述是小编给大家介绍的python elasticsearch从创建索引到写入数据的全过程,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

python elasticsearch创建索引 python elasticsearch