一、Dijkstra算法的思路Dijkstra算法是针对单源点求最短路径的算法。其主要思路如下:1.将顶
一、Dijkstra算法的思路
Dijkstra算法是针对单源点求最短路径的算法。
其主要思路如下:
1. 将顶点分为两部分:已经知道当前最短路径的顶点集合Q和无法到达顶点集合R。
2. 定义一个距离数组(distance)记录源点到各顶点的距离,下标表示顶点,元素值为距离。源点(start)到自身的距离为0,源点无法到达的顶点的距离就是一个大数(比如Infinity)。
3. 以距离数组中值为非Infinity的顶点V为中转跳点,假设V跳转至顶点W的距离加上顶点V至源点的距离还小于顶点W至源点的距离,那么就可以更新顶点W至源点的距离。即下面distance[V] + matrix[V][W] < distance[W],那么distance[W] = distance[V] + matrix[V][W]。
4. 重复上一步骤,即遍历距离数组,同时无法到达顶点集合R为空。
二、具体例子
偷个懒,直接用上一篇博客《最小生成树算法——Prim算法和Kruskal算法的JS实现》的图为例子。
它的邻接矩阵如下:
求解步骤
第一步:假设源点为V0,那么目前最短路径的顶点集合Q中就只有{V0}和无法到达顶点集合R中有{V1, V2, V3, V4}
第二步:初始化distance数组,就是下面这样
第三步:以distance数组中值为非Infinity的顶点为中转跳点,这一步就是V0,依照如果distance[V] + matrix[V][W] < distance[W],那么distance[W] = distance[V] + matrix[V][W]的规则,distance数组就会变成下面这样,同时集合Q变成了{V0, V1, V2, V4},集合R变成了{V3}
第四步:因为集合R中还有1个顶点,所以重复第三步的方法,然后变成以V1为中转跳点,但是以V1为中转顶点都不满足distance[V] + matrix[V][W] < distance[W],所以没更新distance和两个集合
第五步:因为集合R中还有1个顶点,所以重复第三步的方法,此时变成以V2为中转跳点,然后发现V0到达V3的距离可以更新,因为2 + 3 < 9,所以distance更新,集合也更新。
之后同理,遍历完distance之后,输出
三、代码实现
这个代码没有考虑权值为负数的情况,还没验证负数的情况,目前是按照权值为正数实现的,之后考虑完善。
同时这是针对单源点求最短路径,如果求全图各顶点的最短路径,只需要遍历顶点然后使用Dijkstra算法,这样算上Dijkstra算法本身的时间复杂度,总的复杂度会是O(n^3)。
/**
* Dijkstra算法:单源最短路径
* 思路:
* 1. 将顶点分为两部分:已经知道当前最短路径的顶点集合Q和无法到达顶点集合R。
* 2. 定义一个距离数组(distance)记录源点到各顶点的距离,下标表示顶点,元素值为距离。源点(start)到自身的距离为0,源点无法到达的顶点的距离就是一个大数(比如Infinity)。
* 3. 以距离数组中值为非Infinity的顶点V为中转跳点,假设V跳转至顶点W的距离加上顶点V至源点的距离还小于顶点W至源点的距离,那么就可以更新顶点W至源点的距离。即下面distance[V] + matrix[V][W] < distance[W],那么distance[W] = distance[V] + matrix[V][W]。
* 4. 重复上一步骤,即遍历距离数组,同时无法到达顶点集合R为空。
*
* @param matrix 邻接矩阵,表示图
* @param start 起点
*
*
*
* 如果求全图各顶点作为源点的全部最短路径,则遍历使用Dijkstra算法即可,不过时间复杂度就变成O(n^3)了
* */
function Dijkstra(matrix, start = 0) {
const rows = matrix.length,//rows和cols一样,其实就是顶点个数
cols = matrix[0].length;
if(rows !== cols || start >= rows) return new Error("邻接矩阵错误或者源点错误");
//初始化distance
const distance = new Array(rows).fill(Infinity);
distance[start] = 0;
for(let i = 0; i < rows; i++) {
//达到不了的顶点不能作为中转跳点
if(distance[i] < Infinity) {
for(let j = 0; j < cols; j++) {
//比如通过比较distance[i] + matrix[i][j]和distance[j]的大小来决定是否更新distance[j]。
if(matrix[i][j] + distance[i] < distance[j]) {
distance[j] = matrix[i][j] + distance[i];
}
}
console.log(distance);
}
}
return distance;
}
/**
* 邻接矩阵
* 值为顶点与顶点之间边的权值,0表示无自环,一个大数表示无边(比如10000)
* */
const MAX_INTEGER = Infinity;//没有边或者有向图中无法到达
const MIN_INTEGER = 0;//没有自环
const matrix= [
[MIN_INTEGER, 9, 2, MAX_INTEGER, 6],
[9, MIN_INTEGER, 3, MAX_INTEGER, MAX_INTEGER],
[2, 3, MIN_INTEGER, 5, MAX_INTEGER],
[MAX_INTEGER, MAX_INTEGER, 5, MIN_INTEGER, 1],
[6, MAX_INTEGER, MAX_INTEGER, 1, MIN_INTEGER]
];
console.log(Dijkstra(matrix, 0));//[ 0, 5, 2, 7, 6 ]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
js Dijkstra 最短路径