python

超轻量级php框架startmvc

余弦相似性计算及python代码实现过程解析

更新时间:2020-07-31 13:18:01 作者:startmvc
A:西米喜欢健身B:超超不爱健身,喜欢打游戏step1:分词A:西米/喜欢/健身B:超超/不

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现


import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
 if i in tag_dict1:
 v1.append(tag_dict1[i])
 else:
 v1.append(0)
 if i in tag_dict2:
 v2.append(tag_dict2[i])
 else:
 v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
 dot_product += a * b
 normA += a ** 2
 normB += b ** 2
 if normA == 0.0 or normB == 0.0:
 return 0
 else:
 return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2) 
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

余弦 相似性 计算 python