许多人在数据科学、机器学习、web开发、脚本编写和自动化等领域中都会使用Python,它是一
许多人在数据科学、机器学习、web开发、脚本编写和自动化等领域中都会使用Python,它是一种十分流行的语言。
Python流行的部分原因在于简单易学。
本文将简要介绍30个简短的、且能在30秒内掌握的代码片段。
1. 唯一性
以下方法可以检查给定列表是否有重复的地方,可用set()的属性将其从列表中删除。
def all_unique(lst):
return len(lst) == len(set(lst))
x = [1,1,2,2,3,2,3,4,5,6]
y = [1,2,3,4,5]
all_unique(x) # False
all_unique(y) # True
2. 变位词(相同字母异序词)
此方法可用于检查两个字符串是否为变位词。
from collections import Counter
def anagram(first, second):
return Counter(first) == Counter(second)
anagram("abcd3", "3acdb") # True
3. 内存
此代码段可用于检查对象的内存使用情况。
import sys
variable = 30
print(sys.getsizeof(variable)) # 24
4. 字节大小
此方法可输出字符串的字节大小。
def byte_size(string):
return(len(string.encode('utf-8')))
byte_size('😀') # 4
byte_size('Hello World') # 11
5. 打印N次字符串
此代码段无需经过循环操作便可多次打印字符串。
n = 2;
s ="Programming";
print(s * n); # ProgrammingProgramming
6. 首字母大写
以下代码片段只利用了title(),就能将字符串中每个单词的首字母大写。
s = "programming is awesome"
print(s.title()) # Programming Is Awesome
7. 列表细分
该方法将列表细分为特定大小的列表。
def chunk(list, size):
return [list[i:i+size] for i in range(0,len(list), size)]
8. 压缩
以下代码使用filter()从,将错误值(False、None、0和“ ”)从列表中删除。
def compact(lst):
return list(filter(bool, lst))
compact([0, 1, False, 2, '', 3, 'a', 's', 34]) # [ 1, 2, 3, 'a', 's', 34 ]
9. 计数
以下代码可用于调换2D数组排列。
array = [['a', 'b'], ['c', 'd'], ['e', 'f']]
transposed = zip(*array)
print(transposed) # [('a', 'c', 'e'), ('b', 'd', 'f')]
10. 链式比较
以下代码可对各种运算符进行多次比较。
a = 3
print( 2 < a < 8) # True
print(1 == a < 2) # False
11. 逗号分隔
此代码段可将字符串列表转换为单个字符串,同时将列表中的每个元素用逗号隔开。
hobbies = ["basketball", "football", "swimming"]
print("My hobbies are: " + ", ".join(hobbies)) # My hobbies are: basketball, football, swimming
12. 元音计数
此方法可计算字符串中元音(“a”、“e”、“i”、“o”、“u”)的数目。
import re
def count_vowels(str):
return len(len(re.findall(r'[aeiou]', str, re.IGNORECASE))
count_vowels('foobar') # 3
count_vowels('gym') # 0
13. 首字母小写
此方法可将给定字符串的首字母转换为小写模式。
def decapitalize(string):
return str[:1].lower() + str[1:]
decapitalize('FooBar') # 'fooBar'
decapitalize('FooBar') # 'fooBar'
14. 展开列表
下列代码采用了递归法展开潜在的深层列表。
def spread(arg):
ret = []
for i in arg:
if isinstance(i, list):
ret.extend(i)
else:
ret.append(i)
return ret
def deep_flatten(lst):
result = []
result.extend(
spread(list(map(lambda x: deep_flatten(x) if type(x) == list else x, lst))))
return result
deep_flatten([1, [2], [[3], 4], 5]) # [1,2,3,4,5]
15. 寻找差异
此方法仅保留第一个迭代中的值来查找两个迭代之间的差异
def difference(a, b):
set_a = set(a)
set_b = set(b)
comparison = set_a.difference(set_b)
return list(comparison)
difference([1,2,3], [1,2,4]) # [3]
16. 输出差异
以下方法利用已有函数,寻找并输出两个列表之间的差异。
def difference_by(a, b, fn):
b = set(map(fn, b))
return [item for item in a if fn(item) not in b]
from math import floor
difference_by([2.1, 1.2], [2.3, 3.4],floor) # [1.2]
difference_by([{ 'x': 2 }, { 'x': 1 }], [{ 'x': 1 }], lambda v : v['x']) # [ { x: 2 } ]
17. 链式函数调用
以下方法可以实现在一行中调用多个函数
def add(a, b):
return a + b
def subtract(a, b):
return a – b
a, b = 4, 5
print((subtract if a > b else add)(a, b)) # 9
18. 重复值存在与否
以下方法利用set()只包含唯一元素的特性来检查列表是否存在重复值。
def has_duplicates(lst):
return len(lst) != len(set(lst))
x = [1,2,3,4,5,5]
y = [1,2,3,4,5]
has_duplicates(x) # True
has_duplicates(y) # False
19. 合并字库
以下方法可将两个字库合并。
def merge_two_dicts(a, b):
c = a.copy() # make a copy of a
c.update(b) # modify keys and values of a with the ones from b
return c
a = { 'x': 1, 'y': 2}
b = { 'y': 3, 'z': 4}
print(merge_two_dicts(a, b)) # {'y': 3, 'x': 1, 'z': 4}
在Python3.5及升级版中,也可按下列方式执行步骤代码:
def merge_dictionaries(a, b)
return {**a, **b}
a = { 'x': 1, 'y': 2}
b = { 'y': 3, 'z': 4}
print(merge_dictionaries(a, b)) # {'y': 3, 'x': 1, 'z': 4}
20. 将两个列表转换为字库
以下方法可将两个列表转换为字库。
def to_dictionary(keys, values):
return dict(zip(keys, values))
keys = ["a", "b", "c"]
values = [2, 3, 4]
print(to_dictionary(keys, values)) # {'a': 2, 'c': 4, 'b': 3}
21. 列举
以下代码段可以采用列举的方式来获取列表的值和索引。
list = ["a", "b", "c", "d"]
for index, element in enumerate(list):
print("Value", element, "Index ", index, )
# ('Value', 'a', 'Index ', 0)
# ('Value', 'b', 'Index ', 1)
#('Value', 'c', 'Index ', 2)
# ('Value', 'd', 'Index ', 3)
22. 时间成本
以下代码可计算执行特定代码所需的时间。
import time
start_time = time.time()
a = 1
b = 2
c = a + b
print(c) #3
end_time = time.time()
total_time = end_time - start_time
print("Time: ", total_time)
# ('Time: ', 1.1205673217773438e-05)
23. Try else语句
可将else句作为try/except语句的一部分,如果没有异常情况,则执行else语句。
try:
2*3
except TypeError:
print("An exception was raised")
else:
print("Thank God, no exceptions were raised.")
#Thank God, no exceptions were raised.
24. 出现频率最高的元素
此方法将输出列表中出镜率最高的元素。
def most_frequent(list):
return max(set(list), key = list.count)
list = [1,2,1,2,3,2,1,4,2]
most_frequent(list)
25. 回文(正反读有一样的字符串)
以下代码检查给定字符串是否为回文。首先将字符串转换为小写,然后从中删除非字母字符,最后将新字符串版本与原版本进行比对。
def palindrome(string):
from re import sub
s = sub('[\W_]', '', string.lower())
return s == s[::-1]
palindrome('taco cat') # True
26. 不用if-else语句的计算器
以下代码片段展示了如何在不用if-else条件语句的情况下,编写简易计算器。
import operator
action = {
"+": operator.add,
"-": operator.sub,
"/": operator.truediv,
"*": operator.mul,
"**": pow
}
print(action['-'](50, 25)) # 25
27. 随机排序
该算法采用Fisher-Yates algorithm对新列表中的元素进行随机排序。
from copy import deepcopy
from random import randint
def shuffle(lst):
temp_lst = deepcopy(lst)
m = len(temp_lst)
while (m):
m -= 1
i = randint(0, m)
temp_lst[m], temp_lst[i] = temp_lst[i], temp_lst[m]
return temp_lst
foo = [1,2,3]
shuffle(foo) # [2,3,1] , foo = [1,2,3]
28. 展开列表
此方法将类似javascript中[].concat(…arr)这样的列表展开。
def spread(arg):
ret = []
for i in arg:
if isinstance(i, list):
ret.extend(i)
else:
ret.append(i)
return ret
spread([1,2,3,[4,5,6],[7],8,9]) # [1,2,3,4,5,6,7,8,9]
29. 交换变量
此方法为能在不使用额外变量的情况下快速交换两种变量。
def swap(a, b):
return b, a
a, b = -1, 14
swap(a, b) # (14, -1)
30. 获取丢失部分的默认值
以下代码可在所需对象不在字库范围内的情况下获取默认值。
d = {'a': 1, 'b': 2}
print(d.get('c', 3)) # 3
本文只简单介绍了一些能在日常工作中帮到我们的方法。但内容都主要立足于GitHub 存储库:https://github.com/30-seconds/30_seconds_of_knowledge,该存储库还包含了有关Python及其他语言和技术行之有效的代码。
python 代码片段 python 代码