【更新】主要提供两种方案:方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取
【更新】主要提供两种方案:
方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值
方案二:使用opencv库函数进行处理。(效果不错)
1、将图片颜色转为hsv, 2、使用cv2.inRange()函数进行背景颜色过滤 3、将过滤后的颜色进行二值化处理 4、进行形态学腐蚀膨胀,cv2.dilate() 5、统计白色区域面积
详解:方案一:
转载出处:www.jb51.net/article/62526.htm
项目实际需要,对识别出来的车车需要标记颜色,因此采用方案如下:
1、通过import PIL.ImageGrab as ImageGrab 将识别出来的汽车矩形框裁剪出来
img_color=image.crop((left,right,top,bottom))
2、将裁剪出来的image进行颜色图像识别
RGB和hsv中间的转换关系,网上很多,我也没有具体去研究如何转换的,能用就行
附上测试,封装成函数方法:
import colorsys
import PIL.Image as Image
def get_dominant_color(image):
max_score = 0.0001
dominant_color = None
for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]):
# 转为HSV标准
saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1]
y = min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)
y = (y-16.0)/(235-16)
#忽略高亮色
if y > 0.9:
continue
score = (saturation+0.1)*count
if score > max_score:
max_score = score
dominant_color = (r,g,b)
return dominant_color
if __name__ == '__main__':
image = Image.open('test.jpg')
image = image.convert('RGB')
print(get_dominant_color(image))
测试图
结果
在这个网上查询RGB数值对应的颜色
http://tools.jb51.net/static/colorpicker/index.html
方案二:opencv计算机视觉库函数处理
1、定义HSV颜色字典,参考网上HSV颜色分类
代码如下:
import numpy as np
import collections
#定义字典存放颜色分量上下限
#例如:{颜色: [min分量, max分量]}
#{'red': [array([160, 43, 46]), array([179, 255, 255])]}
def getColorList():
dict = collections.defaultdict(list)
# 黑色
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 46])
color_list = []
color_list.append(lower_black)
color_list.append(upper_black)
dict['black'] = color_list
# #灰色
# lower_gray = np.array([0, 0, 46])
# upper_gray = np.array([180, 43, 220])
# color_list = []
# color_list.append(lower_gray)
# color_list.append(upper_gray)
# dict['gray']=color_list
# 白色
lower_white = np.array([0, 0, 221])
upper_white = np.array([180, 30, 255])
color_list = []
color_list.append(lower_white)
color_list.append(upper_white)
dict['white'] = color_list
#红色
lower_red = np.array([156, 43, 46])
upper_red = np.array([180, 255, 255])
color_list = []
color_list.append(lower_red)
color_list.append(upper_red)
dict['red']=color_list
# 红色2
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
color_list = []
color_list.append(lower_red)
color_list.append(upper_red)
dict['red2'] = color_list
#橙色
lower_orange = np.array([11, 43, 46])
upper_orange = np.array([25, 255, 255])
color_list = []
color_list.append(lower_orange)
color_list.append(upper_orange)
dict['orange'] = color_list
#黄色
lower_yellow = np.array([26, 43, 46])
upper_yellow = np.array([34, 255, 255])
color_list = []
color_list.append(lower_yellow)
color_list.append(upper_yellow)
dict['yellow'] = color_list
#绿色
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
color_list = []
color_list.append(lower_green)
color_list.append(upper_green)
dict['green'] = color_list
#青色
lower_cyan = np.array([78, 43, 46])
upper_cyan = np.array([99, 255, 255])
color_list = []
color_list.append(lower_cyan)
color_list.append(upper_cyan)
dict['cyan'] = color_list
#蓝色
lower_blue = np.array([100, 43, 46])
upper_blue = np.array([124, 255, 255])
color_list = []
color_list.append(lower_blue)
color_list.append(upper_blue)
dict['blue'] = color_list
# 紫色
lower_purple = np.array([125, 43, 46])
upper_purple = np.array([155, 255, 255])
color_list = []
color_list.append(lower_purple)
color_list.append(upper_purple)
dict['purple'] = color_list
return dict
if __name__ == '__main__':
color_dict = getColorList()
print(color_dict)
num = len(color_dict)
print('num=',num)
for d in color_dict:
print('key=',d)
print('value=',color_dict[d][1])
2、颜色识别
import cv2
import numpy as np
import colorList
filename='car04.jpg'
#处理图片
def get_color(frame):
print('go in get_color')
hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
maxsum = -100
color = None
color_dict = colorList.getColorList()
for d in color_dict:
mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1])
cv2.imwrite(d+'.jpg',mask)
binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
binary = cv2.dilate(binary,None,iterations=2)
img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
sum = 0
for c in cnts:
sum+=cv2.contourArea(c)
if sum > maxsum :
maxsum = sum
color = d
return color
if __name__ == '__main__':
frame = cv2.imread(filename)
print(get_color(frame))
3、结果
原始图像(网上找的测试图):
1)、使用cv2.inRange()函数过滤背景后图片如下:
2)、可见使用白色分量过滤背景后,出现车辆的轮廓,因此,能够计算白色区域的面积,最大的则为该物体颜色
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
Python3识别图片颜色 python图像识别色差 python图像识别