python

超轻量级php框架startmvc

Python坐标线性插值应用实现

更新时间:2020-08-07 02:48 作者:startmvc
一、背景在野外布设700米的测线,点距为10米,用GPS每隔50米测量一个坐标,再把测线的头

一、背景

在野外布设700米的测线,点距为10米,用GPS每隔50米测量一个坐标,再把测线的头和为测量一个坐标。现在需使用线性插值的方法求取每两个坐标之间的其他4个点的值。

二、插值原理

使用等比插值的方法

起始值为 a

终止值为 b

步长值为 (a-b)/5

后面的数分别为 a+n, a+2n, a+3n, a+4n

三、代码实习对 x 插值

interx.py


import numpy as np
f = np.loadtxt('datax.txt')
a = f[:, 0]
b = f[:, 1]
for j in np.arange(len(a)):
	aa = a[j]*1000	# np.arrange()会自动去掉小数
	bb = b[j]*1000
	n = (bb-aa) / 5
	x = np.arange(6)
	x[0] = aa
	print(x[0]/1000)
	for i in range(1, 5, 1):
 x[i] = x[i-1]+n
 print(x[i]/1000)
 i = i+1
	# print(bb/1000)
	# print("\n")

datax.txt


514873.536 514883.939 
514883.939 514894.358 
514894.358 514903.837 
514903.837 514903.807 
514903.807 514907.179 
514907.179 514911.356 
514911.356 514913.448 
514913.448 514913.315 
514913.315 514917.344 
514917.344 514923.684 
514923.684 514924.801
514924.801	514929.697 
514929.697 514916.274

对 y 插值

intery.py


import numpy as np
f = np.loadtxt('datay.txt')
a = f[:, 0]
b = f[:, 1]
for j in np.arange(len(a)):
	aa = (a[j] - 2820000)*1000	# 数据太长会溢出
	bb = (b[j]-2820000)*1000
	n = (bb-aa) / 5
	x = np.arange(6)
	x[0] = aa
	print(x[0]/1000+2820000)
	for i in range(1, 5, 1):
 x[i] = x[i-1]+n
 print(x[i]/1000+2820000)
 i = i+1
	# print(bb/1000)
	# print("\n")

datay.txt


2820617.820 2820660.225 
2820660.225 2820693.988 
2820693.988 2820819.199 
2820819.199 2820831.510 
2820831.510 2820858.666 
2820858.666 2820973.487 
2820973.487 2821017.243 
2821017.243 2821019.518 
2821019.518 2821058.223 
2821058.223 2821097.575 
2821097.575 2821144.436 
2821144.436 2821173.356 
2821173.356 2821218.889 

四、最终成果

手动把两次插值结果复制到dataxy中

dataxy.txt


514873.536 2820617.819 
514875.616 2820626.300 
514877.696 2820634.781 
514879.776 2820643.262 
514881.856 2820651.743 
514883.939 2820660.225 
514886.022 2820666.977 
514888.105 2820673.729 
514890.188 2820680.481 
514892.271 2820687.233 
514894.358 2820693.987 
514896.253 2820719.029 
514898.148 2820744.071 
514900.043 2820769.113 
514901.938 2820794.155 
514903.837 2820819.199 
514903.831 2820821.661 
514903.825 2820824.123 
514903.819 2820826.585 
514903.813 2820829.047 
514903.807 2820831.509 
514904.481 2820836.940 
514905.155 2820842.371 
514905.829 2820847.802 
514906.503 2820853.233 
514907.179 2820858.666 
514908.014 2820881.630 
514908.849 2820904.594 
514909.684 2820927.558 
514910.519 2820950.522 
514911.356 2820973.487 
514911.774 2820982.238 
514912.192 2820990.989 
514912.610 2820999.740 
514913.028 2821008.491 
514913.448 2821017.242 
514913.421 2821017.697 
514913.394 2821018.152 
514913.367 2821018.607 
514913.340 2821019.062 
514913.315 2821019.518 
514914.120 2821027.259 
514914.925 2821035.000 
514915.730 2821042.741 
514916.535 2821050.482 
514917.344 2821058.223 
514918.612 2821066.093 
514919.880 2821073.963 
514921.148 2821081.833 
514922.416 2821089.703 
514923.684 2821097.575 
514923.907 2821106.947 
514924.130 2821116.319 
514924.353 2821125.691 
514924.576 2821135.063 
514924.801 2821144.436 
514925.780 2821150.219 
514926.759 2821156.002 
514927.738 2821161.785 
514928.717 2821167.568 
514929.697 2821173.356 
514927.012 2821182.462 
514924.327 2821191.568 
514921.642 2821200.674 
514918.957 2821209.780 

五、画图对比

dataxy.py


import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
# 解决中文字体显示不出来
mpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False

a = np.loadtxt("datax.txt")
b = np.loadtxt('datay.txt')
c = np.loadtxt('dataxy.txt')
x = a[: ,0]
y = b[: ,0]
xx = c[:,0]
yy = c[:,1]
plt.plot(x,y,color = 'orange',
 label = '插值线段')
plt.scatter(xx,yy,marker='o',
	c = 'deepskyblue',
	alpha = 0.6,
	label = '实测点位')
plt.legend()
plt.title('Python坐标插值')
plt.grid()
# 保存高清图片,dpi表示分辨率
plt.savefig('out.png',dpi = 600)
plt.show()

文件结构

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。