ToTensor中就有转到0-1之间了。#-*-coding:utf-8-*-importtimeimporttorchfromtorchvisionimporttransformsimportcv2tr
ToTensor中就有转到0-1之间了。
# -*- coding:utf-8 -*-
import time
import torch
from torchvision import transforms
import cv2
transform_val_list = [
# transforms.Resize(size=(160, 160), interpolation=3), # Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
trans_compose = transforms.Compose(transform_val_list)
if __name__ == '__main__':
std= [0.229, 0.224, 0.225]
mean=[0.485, 0.456, 0.406]
path="d:/2.jpg"
data=cv2.imread(path)
t1 = time.time()
x = trans_compose(data)
x[0]=x[0]*std[0]+mean[0]
x[1]=x[1]*std[1]+mean[1]
x[2]=x[2].mul(std[2])+mean[2]
img = x.mul(255).byte()
img = img.numpy().transpose((1, 2, 0))
# torch.set_num_threads(3)
# img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
cv2.imshow("sdf", img)
cv2.waitKeyEx()
这个测试时间:归一化与反归一化都需要7ms左右,
但是在多路摄像头中,可能比较慢。
std= [0.229, 0.224, 0.225]
mean=[0.485, 0.456, 0.406]
path="d:/2.jpg"
data=cv2.imread(path)
t1 = time.time()
start = time.time()
x = trans_compose(data)
print("gui", time.time() - start)
for i in range(10):
start=time.time()
for i in range(len(mean)):
# x[i]=x[i]*std[i]+mean[i]
x[i]=x[i].mul(std[i])+mean[i]
img = x.mul(255).byte()
img = img.numpy().transpose((1, 2, 0))
print("fan",time.time()-start)
# torch.set_num_threads(3)
# img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
cv2.imshow("sdf", img)
cv2.waitKeyEx()
以上这篇pytorch 归一化与反归一化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
pytorch 归一化 反归一化