python

超轻量级php框架startmvc

Pytorch 数据加载与数据预处理方式

更新时间:2020-08-18 03:36:02 作者:startmvc
数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况。torchvisio

数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况。

torchvision.datasets中的数据集

torchvision.datasets中自带MNIST,Imagenet-12,CIFAR等数据集,所有的数据集都是torch.utils.data.Dataset的子类,都包含 _ _ len _ (获取数据集长度)和 _ getItem _ _ (获取数据集中每一项)两个子方法。

Dataset源码如上,可以看到其中包含了两个没有实现的子方法,之后所有的Dataet类都继承该类,并根据数据情况定制这两个子方法的具体实现。

因此当我们需要加载自己的数据集的时候也可以借鉴这种方法,只需要继承torch.utils.data.Dataset类并重写 init ,len,以及getitem这三个方法即可。这样组着的类可以直接作为参数传入到torch.util.data.DataLoader中去。

以CIFAR10为例 源码:


class torchvision.datasets.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)

root (string) – Root directory of dataset where directory cifar-10-batches-py exists or will be saved to if download is set to True.
train (bool, optional) – If True, creates dataset from training set, otherwise creates from test set.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.

加载自己的数据集

对于torchvision.datasets中有两个不同的类,分别为DatasetFolder和ImageFolder,ImageFolder是继承自DatasetFolder。

下面我们通过源码来看一看folder文件中DatasetFolder和ImageFolder分别做了些什么


import torch.utils.data as data
from PIL import Image
import os
import os.path


def has_file_allowed_extension(filename, extensions): //检查输入是否是规定的扩展名
 """Checks if a file is an allowed extension.

 Args:
 filename (string): path to a file

 Returns:
 bool: True if the filename ends with a known image extension
 """
 filename_lower = filename.lower()
 return any(filename_lower.endswith(ext) for ext in extensions)


def find_classes(dir):
 classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] //获取root目录下所有的文件夹名称

 classes.sort()
 class_to_idx = {classes[i]: i for i in range(len(classes))} //生成类别名称与类别id的对应Dictionary
 return classes, class_to_idx


def make_dataset(dir, class_to_idx, extensions):
 images = []
 dir = os.path.expanduser(dir)// 将~和~user转化为用户目录,对参数中出现~进行处理
 for target in sorted(os.listdir(dir)):
 d = os.path.join(dir, target)
 if not os.path.isdir(d):
 continue

 for root, _, fnames in sorted(os.walk(d)): //os.work包含三个部分,root代表该目录路径 _代表该路径下的文件夹名称集合,fnames代表该路径下的文件名称集合
 for fname in sorted(fnames):
 if has_file_allowed_extension(fname, extensions):
 path = os.path.join(root, fname)
 item = (path, class_to_idx[target])
 images.append(item) //生成(训练样本图像目录,训练样本所属类别)的元组

 return images //返回上述元组的列表


class DatasetFolder(data.Dataset):
 """A generic data loader where the samples are arranged in this way: ::

 root/class_x/xxx.ext
 root/class_x/xxy.ext
 root/class_x/xxz.ext

 root/class_y/123.ext
 root/class_y/nsdf3.ext
 root/class_y/asd932_.ext

 Args:
 root (string): Root directory path.
 loader (callable): A function to load a sample given its path.
 extensions (list[string]): A list of allowed extensions.
 transform (callable, optional): A function/transform that takes in
 a sample and returns a transformed version.
 E.g, ``transforms.RandomCrop`` for images.
 target_transform (callable, optional): A function/transform that takes
 in the target and transforms it.

 Attributes:
 classes (list): List of the class names.
 class_to_idx (dict): Dict with items (class_name, class_index).
 samples (list): List of (sample path, class_index) tuples
 """

 def __init__(self, root, loader, extensions, transform=None, target_transform=None):
 classes, class_to_idx = find_classes(root)
 samples = make_dataset(root, class_to_idx, extensions)
 if len(samples) == 0:
 raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
 "Supported extensions are: " + ",".join(extensions)))

 self.root = root
 self.loader = loader
 self.extensions = extensions

 self.classes = classes
 self.class_to_idx = class_to_idx
 self.samples = samples

 self.transform = transform
 self.target_transform = target_transform

 def __getitem__(self, index):
 """
 根据index获取sample 返回值为(sample,target)元组,同时如果该类输入参数中有transform和target_transform,torchvision.transforms类型的参数时,将获取的元组分别执行transform和target_transform中的数据转换方法。
 Args:
 index (int): Index

 Returns:
 tuple: (sample, target) where target is class_index of the target class.
 """
 path, target = self.samples[index]
 sample = self.loader(path)
 if self.transform is not None:
 sample = self.transform(sample)
 if self.target_transform is not None:
 target = self.target_transform(target)

 return sample, target


 def __len__(self):
 return len(self.samples)

 def __repr__(self): //定义输出对象格式 其中和__str__的区别是__repr__无论是print输出还是直接输出对象自身 都是以定义的格式进行输出,而__str__ 只有在print输出的时候会是以定义的格式进行输出
 fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
 fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
 fmt_str += ' Root Location: {}\n'.format(self.root)
 tmp = ' Transforms (if any): '
 fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
 tmp = ' Target Transforms (if any): '
 fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
 return fmt_str



IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']


def pil_loader(path):
 # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
 with open(path, 'rb') as f:
 img = Image.open(f)
 return img.convert('RGB')


def accimage_loader(path):
 import accimage
 try:
 return accimage.Image(path)
 except IOError:
 # Potentially a decoding problem, fall back to PIL.Image
 return pil_loader(path)


def default_loader(path):
 from torchvision import get_image_backend
 if get_image_backend() == 'accimage':
 return accimage_loader(path)
 else:
 return pil_loader(path)


class ImageFolder(DatasetFolder): 
 """A generic data loader where the images are arranged in this way: ::

 root/dog/xxx.png
 root/dog/xxy.png
 root/dog/xxz.png

 root/cat/123.png
 root/cat/nsdf3.png
 root/cat/asd932_.png

 Args:
 root (string): Root directory path.
 transform (callable, optional): A function/transform that takes in an PIL image
 and returns a transformed version. E.g, ``transforms.RandomCrop``
 target_transform (callable, optional): A function/transform that takes in the
 target and transforms it.
 loader (callable, optional): A function to load an image given its path.

 Attributes:
 classes (list): List of the class names.
 class_to_idx (dict): Dict with items (class_name, class_index).
 imgs (list): List of (image path, class_index) tuples
 """
 def __init__(self, root, transform=None, target_transform=None,
 loader=default_loader):
 super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
 transform=transform,
 target_transform=target_transform)
 self.imgs = self.samples

如果自己所要加载的数据组织形式如下


root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png

即不同类别的训练数据分别存储在不同的文件夹中,这些文件夹都在root(即形如 D:/animals 或者 /usr/animals )路径下


class torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=<function default_loader>)


参数如下:


root (string) – Root directory path.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
loader – A function to load an image given its path. 就是上述源码中


__getitem__(index)
Parameters: index (int) – Index
Returns: (sample, target) where target is class_index of the target class.
Return type: tuple

可以通过torchvision.datasets.ImageFolder进行加载


img_data = torchvision.datasets.ImageFolder('D:/bnu/database/flower',
 transform=transforms.Compose([
 transforms.Scale(256),
 transforms.CenterCrop(224),
 transforms.ToTensor()])
 )
print(len(img_data))
data_loader = torch.utils.data.DataLoader(img_data, batch_size=20,shuffle=True)
print(len(data_loader))

对于所有的训练样本都在一个文件夹中 同时有一个对应的txt文件每一行分别是对应图像的路径以及其所属的类别,可以参照上述class写出对应的加载类


def default_loader(path):
 return Image.open(path).convert('RGB')


class MyDataset(Dataset):
 def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
 fh = open(txt, 'r')
 imgs = []
 for line in fh:
 line = line.strip('\n')
 line = line.rstrip()
 words = line.split()
 imgs.append((words[0],int(words[1])))
 self.imgs = imgs
 self.transform = transform
 self.target_transform = target_transform
 self.loader = loader

 def __getitem__(self, index):
 fn, label = self.imgs[index]
 img = self.loader(fn)
 if self.transform is not None:
 img = self.transform(img)
 return img,label

 def __len__(self):
 return len(self.imgs)

train_data=MyDataset(txt='mnist_test.txt', transform=transforms.ToTensor())
data_loader = DataLoader(train_data, batch_size=100,shuffle=True)
print(len(data_loader))

DataLoader解析

位于torch.util.data.DataLoader中 源代码

该接口的主要目的是将pytorch中已有的数据接口如torchvision.datasets.ImageFolder,或者自定义的数据读取接口转化按照

batch_size的大小封装为Tensor,即相当于在内置数据接口或者自定义数据接口的基础上增加一维,大小为batch_size的大小,

得到的数据在之后可以通过封装为Variable,作为模型的输出

_ _ init _ _中所需的参数如下


1. dataset torch.utils.data.Dataset类的子类,可以是torchvision.datasets.ImageFolder等内置类,也可是继承了torch.utils.data.Dataset的自定义类
2. batch_size 每一个batch中包含的样本个数,默认是1 
3. shuffle 一般在训练集中采用,默认是false,设置为true则每一个epoch都会将训练样本打乱
4. sampler 训练样本选取策略,和shuffle是互斥的 如果 shuffle为true,该参数一定要为None
5. batch_sampler BatchSampler 一次产生一个 batch 的 indices,和sampler以及shuffle互斥,一般使用默认的即可
 上述Sampler的源代码地址如下[源代码](https://github.com/pytorch/pytorch/blob/master/torch/utils/data/sampler.py)
6. num_workers 用于数据加载的线程数量 默认为0 即只有主线程用来加载数据
7. collate_fn 用来聚合数据生成mini_batch

使用的时候一般为如下使用方法:


train_data=torch.utils.data.DataLoader(...) 
for i, (input, target) in enumerate(train_data): 
...

循环取DataLoader中的数据会触发类中_ _ iter __方法,查看源代码可知 其中调用的方法为 return _DataLoaderIter(self),因此需要查看 DataLoaderIter 这一内部类


class DataLoaderIter(object):
 "Iterates once over the DataLoader's dataset, as specified by the sampler"

 def __init__(self, loader):
 self.dataset = loader.dataset
 self.collate_fn = loader.collate_fn
 self.batch_sampler = loader.batch_sampler
 self.num_workers = loader.num_workers
 self.pin_memory = loader.pin_memory and torch.cuda.is_available()
 self.timeout = loader.timeout
 self.done_event = threading.Event()

 self.sample_iter = iter(self.batch_sampler)

 if self.num_workers > 0:
 self.worker_init_fn = loader.worker_init_fn
 self.index_queue = multiprocessing.SimpleQueue()
 self.worker_result_queue = multiprocessing.SimpleQueue()
 self.batches_outstanding = 0
 self.worker_pids_set = False
 self.shutdown = False
 self.send_idx = 0
 self.rcvd_idx = 0
 self.reorder_dict = {}

 base_seed = torch.LongTensor(1).random_()[0]
 self.workers = [
 multiprocessing.Process(
 target=_worker_loop,
 args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
 base_seed + i, self.worker_init_fn, i))
 for i in range(self.num_workers)]

 if self.pin_memory or self.timeout > 0:
 self.data_queue = queue.Queue()
 self.worker_manager_thread = threading.Thread(
 target=_worker_manager_loop,
 args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
 torch.cuda.current_device()))
 self.worker_manager_thread.daemon = True
 self.worker_manager_thread.start()
 else:
 self.data_queue = self.worker_result_queue

 for w in self.workers:
 w.daemon = True # ensure that the worker exits on process exit
 w.start()

 _update_worker_pids(id(self), tuple(w.pid for w in self.workers))
 _set_SIGCHLD_handler()
 self.worker_pids_set = True

 # prime the prefetch loop
 for _ in range(2 * self.num_workers):
 self._put_indices()

以上这篇Pytorch 数据加载与数据预处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Pytorch 数据 加载 预处理