python

超轻量级php框架startmvc

Pytorch提取模型特征向量保存至csv的例子

更新时间:2020-08-18 09:06:01 作者:startmvc
Pytorch提取模型特征向量#-*-coding:utf-8-*-"""dj"""importtorchimporttorch.nnasnnimportosfromtorchvisionimportmode

Pytorch提取模型特征向量


# -*- coding: utf-8 -*-
"""
dj
"""
import torch
import torch.nn as nn
import os
from torchvision import models, transforms
from torch.autograd import Variable 
import numpy as np
from PIL import Image 
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
 def forward(self, x):
 return x.view(x.size(0), -1)
class M(nn.Module):
 def __init__(self, backbone1, drop, pretrained=True):
 super(M,self).__init__()
 if pretrained:
 img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') 
 else:
 img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None) 
 self.img_encoder = list(img_model.children())[:-2]
 self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
 self.img_encoder = nn.Sequential(*self.img_encoder)
 if drop > 0:
 self.img_fc = nn.Sequential(FCViewer()) 
 else:
 self.img_fc = nn.Sequential(
 FCViewer())
 def forward(self, x_img):
 x_img = self.img_encoder(x_img)
 x_img = self.img_fc(x_img)
 return x_img 
model1=M('resnet18',0,pretrained=True)
features_dir = '/home/cc/Desktop/features' 
transform1 = transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor()]) 
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
 pic=file_path+'/'+name
 img = Image.open(pic)
 img1 = transform1(img)
 x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
 y = model1(x)
 y = y.data.numpy()
 y = y.tolist()
 #print(y)
 test=pd.DataFrame(data=y)
 #print(test)
 test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)

jiazaixunlianhaodemoxing


import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
class ResidualBlock(nn.Module):
 def __init__(self, inchannel, outchannel, stride=1):
 super(ResidualBlock, self).__init__()
 self.left = nn.Sequential(
 nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
 nn.BatchNorm2d(outchannel),
 nn.ReLU(inplace=True),
 nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
 nn.BatchNorm2d(outchannel)
 )
 self.shortcut = nn.Sequential()
 if stride != 1 or inchannel != outchannel:
 self.shortcut = nn.Sequential(
 nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(outchannel)
 )

 def forward(self, x):
 out = self.left(x)
 out += self.shortcut(x)
 out = F.relu(out)
 return out

class ResNet(nn.Module):
 def __init__(self, ResidualBlock, num_classes=10):
 super(ResNet, self).__init__()
 self.inchannel = 64
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(),
 )
 self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
 self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
 self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
 self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
 self.fc = nn.Linear(512, num_classes)

 def make_layer(self, block, channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1]
 layers = []
 for stride in strides:
 layers.append(block(self.inchannel, channels, stride))
 self.inchannel = channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.layer1(out)
 out = self.layer2(out)
 out = self.layer3(out)
 out = self.layer4(out)
 out = F.avg_pool2d(out, 4)
 out = out.view(out.size(0), -1)
 out = self.fc(out)
 return out


def ResNet18():

 return ResNet(ResidualBlock)

import os
from torchvision import models, transforms
from torch.autograd import Variable 
import numpy as np
from PIL import Image 
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
 def forward(self, x):
 return x.view(x.size(0), -1)
class M(nn.Module):
 def __init__(self, backbone1, drop, pretrained=True):
 super(M,self).__init__()
 if pretrained:
 img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') 
 else:
 img_model = ResNet18()
 we='/home/cc/Desktop/dj/model1/incption--7'
 # 模型定义-ResNet
 #net = ResNet18().to(device)
 img_model.load_state_dict(torch.load(we))#diaoyong 
 self.img_encoder = list(img_model.children())[:-2]
 self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
 self.img_encoder = nn.Sequential(*self.img_encoder)
 if drop > 0:
 self.img_fc = nn.Sequential(FCViewer()) 
 else:
 self.img_fc = nn.Sequential(
 FCViewer())
 def forward(self, x_img):
 x_img = self.img_encoder(x_img)
 x_img = self.img_fc(x_img)
 return x_img 
model1=M('resnet18',0,pretrained=None)
features_dir = '/home/cc/Desktop/features' 
transform1 = transforms.Compose([
 transforms.Resize(56),
 transforms.CenterCrop(32),
 transforms.ToTensor()]) 
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
 pic=file_path+'/'+name
 img = Image.open(pic)
 img1 = transform1(img)
 x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
 y = model1(x)
 y = y.data.numpy()
 y = y.tolist()
 #print(y)
 test=pd.DataFrame(data=y)
 #print(test)
 test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)

以上这篇Pytorch提取模型特征向量保存至csv的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Pytorch 特征 向量 csv