python

超轻量级php框架startmvc

pytorch 准备、训练和测试自己的图片数据的方法

更新时间:2020-08-19 23:06:01 作者:startmvc
大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试。如果我们是自己的

大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试。如果我们是自己的图片数据,又该怎么做呢?

一、我的数据

我在学习的时候,使用的是fashion-mnist。这个数据比较小,我的电脑没有GPU,还能吃得消。关于fashion-mnist数据,可以百度,也可以点此 了解一下,数据就像这个样子:

下载地址:https://github.com/zalandoresearch/fashion-mnist

但是下载下来是一种二进制文件,并不是图片,因此我先转换成了图片。

我先解压gz文件到e:/fashion_mnist/文件夹

然后运行代码:


import os
from skimage import io
import torchvision.datasets.mnist as mnist

root="E:/fashion_mnist/"
train_set = (
 mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
 mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
 )
test_set = (
 mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
 mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
 )
print("training set :",train_set[0].size())
print("test set :",test_set[0].size())

def convert_to_img(train=True):
 if(train):
 f=open(root+'train.txt','w')
 data_path=root+'/train/'
 if(not os.path.exists(data_path)):
 os.makedirs(data_path)
 for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
 img_path=data_path+str(i)+'.jpg'
 io.imsave(img_path,img.numpy())
 f.write(img_path+' '+str(label)+'\n')
 f.close()
 else:
 f = open(root + 'test.txt', 'w')
 data_path = root + '/test/'
 if (not os.path.exists(data_path)):
 os.makedirs(data_path)
 for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
 img_path = data_path+ str(i) + '.jpg'
 io.imsave(img_path, img.numpy())
 f.write(img_path + ' ' + str(label) + '\n')
 f.close()

convert_to_img(True)
convert_to_img(False)

这样就会在e:/fashion_mnist/目录下分别生成train和test文件夹,用于存放图片。还在该目录下生成了标签文件train.txt和test.txt.

二、进行CNN分类训练和测试

先要将图片读取出来,准备成torch专用的dataset格式,再通过Dataloader进行分批次训练。

代码如下:


import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/"

# -----------------ready the dataset--------------------------
def default_loader(path):
 return Image.open(path).convert('RGB')
class MyDataset(Dataset):
 def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
 fh = open(txt, 'r')
 imgs = []
 for line in fh:
 line = line.strip('\n')
 line = line.rstrip()
 words = line.split()
 imgs.append((words[0],int(words[1])))
 self.imgs = imgs
 self.transform = transform
 self.target_transform = target_transform
 self.loader = loader

 def __getitem__(self, index):
 fn, label = self.imgs[index]
 img = self.loader(fn)
 if self.transform is not None:
 img = self.transform(img)
 return img,label

 def __len__(self):
 return len(self.imgs)

train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)


#-----------------create the Net and training------------------------

class Net(torch.nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = torch.nn.Sequential(
 torch.nn.Conv2d(3, 32, 3, 1, 1),
 torch.nn.ReLU(),
 torch.nn.MaxPool2d(2))
 self.conv2 = torch.nn.Sequential(
 torch.nn.Conv2d(32, 64, 3, 1, 1),
 torch.nn.ReLU(),
 torch.nn.MaxPool2d(2)
 )
 self.conv3 = torch.nn.Sequential(
 torch.nn.Conv2d(64, 64, 3, 1, 1),
 torch.nn.ReLU(),
 torch.nn.MaxPool2d(2)
 )
 self.dense = torch.nn.Sequential(
 torch.nn.Linear(64 * 3 * 3, 128),
 torch.nn.ReLU(),
 torch.nn.Linear(128, 10)
 )

 def forward(self, x):
 conv1_out = self.conv1(x)
 conv2_out = self.conv2(conv1_out)
 conv3_out = self.conv3(conv2_out)
 res = conv3_out.view(conv3_out.size(0), -1)
 out = self.dense(res)
 return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
 print('epoch {}'.format(epoch + 1))
 # training-----------------------------
 train_loss = 0.
 train_acc = 0.
 for batch_x, batch_y in train_loader:
 batch_x, batch_y = Variable(batch_x), Variable(batch_y)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 train_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 train_correct = (pred == batch_y).sum()
 train_acc += train_correct.data[0]
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
 train_data)), train_acc / (len(train_data))))

 # evaluation--------------------------------
 model.eval()
 eval_loss = 0.
 eval_acc = 0.
 for batch_x, batch_y in test_loader:
 batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 eval_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 num_correct = (pred == batch_y).sum()
 eval_acc += num_correct.data[0]
 print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
 test_data)), eval_acc / (len(test_data))))

打印出来的网络模型:

训练和测试结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

pytorch 准备 训练 测试 pytorch 准备训练测试图片数据 pytorch 训练测试