python

超轻量级php框架startmvc

tensorflow模型保存、加载之变量重命名实例

更新时间:2020-08-22 20:18:01 作者:startmvc
话不多说,干就完了。变量重命名的用处?简单定义:简单来说就是将模型A中的参数paramete

话不多说,干就完了。

变量重命名的用处?

简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B

使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂。

实现方法:

1)、模型保存


import os
import tensorflow as tf
 
weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2],
 mean=0.0,
 stddev=0.1),
 dtype=tf.float32,
 name="weights")
biases = tf.Variable(initial_value=tf.zeros(shape=[2]),
 dtype=tf.float32,
 name="biases")
 
weights_2 = tf.Variable(initial_value=weights.initialized_value(),
 dtype=tf.float32,
 name="weights_2")
 
# saver checkpoint
if os.path.exists("checkpoints") is False:
 os.makedirs("checkpoints")
 
saver = tf.train.Saver()
with tf.Session() as sess:
 init_op = [tf.global_variables_initializer()]
 sess.run(init_op)
 saver.save(sess=sess, save_path="checkpoints/variable.ckpt")

2)、模型加载(变量名称保持不变)


import tensorflow as tf
from matplotlib import pyplot as plt
import os
 
current_path = os.path.dirname(os.path.abspath(__file__))
 
def restore_variable(sess):
 # need not initilize variable, but need to define the same variable like checkpoint
 weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2],
 mean=0.0,
 stddev=0.1),
 dtype=tf.float32,
 name="weights")
 biases = tf.Variable(initial_value=tf.zeros(shape=[2]),
 dtype=tf.float32,
 name="biases")
 
 weights_2 = tf.Variable(initial_value=weights.initialized_value(),
 dtype=tf.float32,
 name="weights_2")
 
 saver = tf.train.Saver()
 
 ckpt_path = os.path.join(current_path, "checkpoints", "variable.ckpt")
 saver.restore(sess=sess, save_path=ckpt_path)
 
 weights_val, weights_2_val = sess.run(
 [
 tf.reshape(weights, shape=[2048]),
 tf.reshape(weights_2, shape=[2048])
 ]
 )
 
 plt.subplot(1, 2, 1)
 plt.scatter([i for i in range(len(weights_val))], weights_val)
 plt.subplot(1, 2, 2)
 plt.scatter([i for i in range(len(weights_2_val))], weights_2_val)
 plt.show()
 
 
if __name__ == '__main__':
 with tf.Session() as sess:
 restore_variable(sess)

3)、模型加载(变量重命名)


import tensorflow as tf
from matplotlib import pyplot as plt
import os
 
current_path = os.path.dirname(os.path.abspath(__file__))
 
 
def restore_variable_renamed(sess):
 conv1_w = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2],
 mean=0.0,
 stddev=0.1),
 dtype=tf.float32,
 name="conv1_w")
 conv1_b = tf.Variable(initial_value=tf.zeros(shape=[2]),
 dtype=tf.float32,
 name="conv1_b")
 
 conv2_w = tf.Variable(initial_value=conv1_w.initialized_value(),
 dtype=tf.float32,
 name="conv2_w")
 
 # variable named 'weights' in ckpt assigned to current variable conv1_w
 # variable named 'biases' in ckpt assigned to current variable conv1_b
 # variable named 'weights_2' in ckpt assigned to current variable conv2_w
 saver = tf.train.Saver({
 "weights": conv1_w,
 "biases": conv1_b,
 "weights_2": conv2_w
 })
 
 ckpt_path = os.path.join(current_path, "checkpoints", "variable.ckpt")
 saver.restore(sess=sess, save_path=ckpt_path)
 
 conv1_w__val, conv2_w__val = sess.run(
 [
 tf.reshape(conv1_w, shape=[2048]),
 tf.reshape(conv2_w, shape=[2048])
 ]
 )
 
 plt.subplot(1, 2, 1)
 plt.scatter([i for i in range(len(conv1_w__val))], conv1_w__val)
 plt.subplot(1, 2, 2)
 plt.scatter([i for i in range(len(conv2_w__val))], conv2_w__val)
 plt.show()
 
 
if __name__ == '__main__':
 with tf.Session() as sess:
 restore_variable_renamed(sess)

总结:

# 之前模型中叫 'weights'的变量赋值给当前的conv1_w变量

# 之前模型中叫 'biases' 的变量赋值给当前的conv1_b变量

# 之前模型中叫 'weights_2'的变量赋值给当前的conv2_w变量

saver = tf.train.Saver({

"weights": conv1_w,

"biases": conv1_b,

"weights_2": conv2_w

})

以上这篇tensorflow模型保存、加载之变量重命名实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

tensorflow 变量 重命名 模型保存