1、我就废话不多说了,直接上代码吧!#SetupaRunConfigtoonlysavecheckpointsoncepertrainingcycle.run_config
1、我就废话不多说了,直接上代码吧!
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig(save_checkpoints_secs=1e9,keep_checkpoint_max = 10)
model = tf.estimator.Estimator(
model_fn=deeplab_model_focal_class_imbalance_loss_adaptive.deeplabv3_plus_model_fn,
model_dir=FLAGS.model_dir,
config=run_config,
params={
'output_stride': FLAGS.output_stride,
'batch_size': FLAGS.batch_size,
'base_architecture': FLAGS.base_architecture,
'pre_trained_model': FLAGS.pre_trained_model,
'batch_norm_decay': _BATCH_NORM_DECAY,
'num_classes': _NUM_CLASSES,
'tensorboard_images_max_outputs': FLAGS.tensorboard_images_max_outputs,
'weight_decay': FLAGS.weight_decay,
'learning_rate_policy': FLAGS.learning_rate_policy,
'num_train': _NUM_IMAGES['train'],
'initial_learning_rate': FLAGS.initial_learning_rate,
'max_iter': FLAGS.max_iter,
'end_learning_rate': FLAGS.end_learning_rate,
'power': _POWER,
'momentum': _MOMENTUM,
'freeze_batch_norm': FLAGS.freeze_batch_norm,
'initial_global_step': FLAGS.initial_global_step
})
以上这篇在tensorflow中设置保存checkpoint的最大数量实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
tensorflow 保存 checkpoint 数量