python

超轻量级php框架startmvc

Python实现 多进程导入CSV数据到 MySQL

更新时间:2020-04-27 18:25:01 作者:startmvc
前段时间帮同事处理了一个把CSV数据导入到MySQL的需求。两个很大的CSV文件,分别有3GB、2100

前段时间帮同事处理了一个把 CSV 数据导入到 MySQL 的需求。两个很大的 CSV 文件, 分别有 3GB、2100 万条记录和 7GB、3500 万条记录。对于这个量级的数据,用简单的单进程/单线程导入 会耗时很久,最终用了多进程的方式来实现。具体过程不赘述,记录一下几个要点:

  1. 批量插入而不是逐条插入
  2. 为了加快插入速度,先不要建索引
  3. 生产者和消费者模型,主进程读文件,多个 worker 进程执行插入
  4. 注意控制 worker 的数量,避免对 MySQL 造成太大的压力
  5. 注意处理脏数据导致的异常
  6. 原始数据是 GBK 编码,所以还要注意转换成 UTF-8
  7. 用 click 封装命令行工具

具体的代码实现如下:


#!/usr/bin/env python
# -*- coding: utf-8 -*-

import codecs
import csv
import logging
import multiprocessing
import os
import warnings

import click
import MySQLdb
import sqlalchemy

warnings.filterwarnings('ignore', category=MySQLdb.Warning)

# 批量插入的记录数量
BATCH = 5000

DB_URI = 'mysql://root@localhost:3306/example?charset=utf8'

engine = sqlalchemy.create_engine(DB_URI)


def get_table_cols(table):
 sql = 'SELECT * FROM `{table}` LIMIT 0'.format(table=table)
 res = engine.execute(sql)
 return res.keys()


def insert_many(table, cols, rows, cursor):
 sql = 'INSERT INTO `{table}` ({cols}) VALUES ({marks})'.format(
 table=table,
 cols=', '.join(cols),
 marks=', '.join(['%s'] * len(cols)))
 cursor.execute(sql, *rows)
 logging.info('process %s inserted %s rows into table %s', os.getpid(), len(rows), table)


def insert_worker(table, cols, queue):
 rows = []
 # 每个子进程创建自己的 engine 对象
 cursor = sqlalchemy.create_engine(DB_URI)
 while True:
 row = queue.get()
 if row is None:
 if rows:
 insert_many(table, cols, rows, cursor)
 break

 rows.append(row)
 if len(rows) == BATCH:
 insert_many(table, cols, rows, cursor)
 rows = []


def insert_parallel(table, reader, w=10):
 cols = get_table_cols(table)

 # 数据队列,主进程读文件并往里写数据,worker 进程从队列读数据
 # 注意一下控制队列的大小,避免消费太慢导致堆积太多数据,占用过多内存
 queue = multiprocessing.Queue(maxsize=w*BATCH*2)
 workers = []
 for i in range(w):
 p = multiprocessing.Process(target=insert_worker, args=(table, cols, queue))
 p.start()
 workers.append(p)
 logging.info('starting # %s worker process, pid: %s...', i + 1, p.pid)

 dirty_data_file = './{}_dirty_rows.csv'.format(table)
 xf = open(dirty_data_file, 'w')
 writer = csv.writer(xf, delimiter=reader.dialect.delimiter)

 for line in reader:
 # 记录并跳过脏数据: 键值数量不一致
 if len(line) != len(cols):
 writer.writerow(line)
 continue

 # 把 None 值替换为 'NULL'
 clean_line = [None if x == 'NULL' else x for x in line]

 # 往队列里写数据
 queue.put(tuple(clean_line))
 if reader.line_num % 500000 == 0:
 logging.info('put %s tasks into queue.', reader.line_num)

 xf.close()

 # 给每个 worker 发送任务结束的信号
 logging.info('send close signal to worker processes')
 for i in range(w):
 queue.put(None)

 for p in workers:
 p.join()


def convert_file_to_utf8(f, rv_file=None):
 if not rv_file:
 name, ext = os.path.splitext(f)
 if isinstance(name, unicode):
 name = name.encode('utf8')
 rv_file = '{}_utf8{}'.format(name, ext)
 logging.info('start to process file %s', f)
 with open(f) as infd:
 with open(rv_file, 'w') as outfd:
 lines = []
 loop = 0
 chunck = 200000
 first_line = infd.readline().strip(codecs.BOM_UTF8).strip() + '\n'
 lines.append(first_line)
 for line in infd:
 clean_line = line.decode('gb18030').encode('utf8')
 clean_line = clean_line.rstrip() + '\n'
 lines.append(clean_line)
 if len(lines) == chunck:
 outfd.writelines(lines)
 lines = []
 loop += 1
 logging.info('processed %s lines.', loop * chunck)

 outfd.writelines(lines)
 logging.info('processed %s lines.', loop * chunck + len(lines))


@click.group()
def cli():
 logging.basicConfig(level=logging.INFO,
 format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')


@cli.command('gbk_to_utf8')
@click.argument('f')
def convert_gbk_to_utf8(f):
 convert_file_to_utf8(f)


@cli.command('load')
@click.option('-t', '--table', required=True, help='表名')
@click.option('-i', '--filename', required=True, help='输入文件')
@click.option('-w', '--workers', default=10, help='worker 数量,默认 10')
def load_fac_day_pro_nos_sal_table(table, filename, workers):
 with open(filename) as fd:
 fd.readline() # skip header
 reader = csv.reader(fd)
 insert_parallel(table, reader, w=workers)


if __name__ == '__main__':
 cli()

以上就是本文给大家分享的全部没人了,希望大家能够喜欢

python csv 导入mysql python mysql 多进程 python csv mysql