python

超轻量级php框架startmvc

Python基于numpy灵活定义神经网络结构的方法

更新时间:2020-05-06 11:42:01 作者:startmvc
本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体

本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:

用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!

一、用法

1). 定义一个三层神经网络:


'''示例一'''
nn = NeuralNetworks([3,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:   输入层节点数目:3   隐藏层节点数目:4   输出层节点数目:2

2).定义一个五层神经网络:


'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:   输入层节点数目:3   隐藏层1节点数目:5   隐藏层2节点数目:7   隐藏层3节点数目:4   输出层节点数目:2

二、实现

如下实现方式为本人(@hhh5460)原创。 要点: dtype=object


import numpy as np
class NeuralNetworks(object):
 ''''''
 def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
 '''搭建神经网络框架'''
 # 各层节点数目 (向量)
 self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
 self.size = self.n.size # 层的总数
 # 层 (向量)
 self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
 self.a = np.empty(self.size, dtype=object)
 self.data_a = np.empty(self.size, dtype=object)
 # 偏置 (向量)
 self.b = np.empty(self.size, dtype=object)
 self.delta_b = np.empty(self.size, dtype=object)
 # 权 (矩阵)
 self.w = np.empty(self.size, dtype=object)
 self.delta_w = np.empty(self.size, dtype=object)
 # 填充
 for i in range(self.size):
 self.a[i] = np.zeros(self.n[i]) # 全零
 self.z[i] = np.zeros(self.n[i]) # 全零
 self.data_a[i] = np.zeros(self.n[i]) # 全零
 if i < self.size - 1:
 self.b[i] = np.ones(self.n[i+1]) # 全一
 self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
 mu, sigma = 0, 0.1 # 均值、方差
 self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
 self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零

下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:


import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
 ''''''
 def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
 '''搭建神经网络框架'''
 self.n_iter = n_iter # 迭代次数
 self.error = error # 允许最大误差
 self.alpha = alpha # 学习速率
 self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
 if n_layers is None:
 raise '各层的节点数目必须设置!'
 elif not isinstance(n_layers, list):
 raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
 # 节点数目 (向量)
 self.n = np.array(n_layers)
 self.size = self.n.size # 层的总数
 # 层 (向量)
 self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
 self.z = np.empty(self.size, dtype=object)
 # 偏置 (向量)
 self.b = np.empty(self.size, dtype=object)
 self.delta_b = np.empty(self.size, dtype=object)
 # 权 (矩阵)
 self.w = np.empty(self.size, dtype=object)
 self.delta_w = np.empty(self.size, dtype=object)
 # 残差 (向量)
 self.data_a = np.empty(self.size, dtype=object)
 # 填充
 for i in range(self.size):
 self.a[i] = np.zeros(self.n[i]) # 全零
 self.z[i] = np.zeros(self.n[i]) # 全零
 self.data_a[i] = np.zeros(self.n[i]) # 全零
 if i < self.size - 1:
 self.b[i] = np.ones(self.n[i+1]) # 全一
 self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
 mu, sigma = 0, 0.1 # 均值、方差
 self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
 self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
 # 激活函数
 self.active_functions = {
 'sigmoid': self.sigmoid,
 'tanh': self.tanh,
 'radb': self.radb,
 'line': self.line,
 }
 # 激活函数的导函数
 self.derivative_functions = {
 'sigmoid': self.sigmoid_d,
 'tanh': self.tanh_d,
 'radb': self.radb_d,
 'line': self.line_d,
 }
 if active_type is None:
 self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
 else:
 self.active_type = active_type
 def sigmoid(self, z):
 if np.max(z) > 600:
 z[z.argmax()] = 600
 return 1.0 / (1.0 + np.exp(-z))
 def tanh(self, z):
 return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
 def radb(self, z):
 return np.exp(-z * z)
 def line(self, z):
 return z
 def sigmoid_d(self, z):
 return z * (1.0 - z)
 def tanh_d(self, z):
 return 1.0 - z * z
 def radb_d(self, z):
 return -2.0 * z * np.exp(-z * z)
 def line_d(self, z):
 return np.ones(z.size) # 全一
 def forward(self, x):
 '''正向传播(在线)''' 
 # 用样本 x 走一遍,刷新所有 z, a
 self.a[0] = x
 for i in range(self.size - 1):
 self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] 
 self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
 def err(self, X, Y):
 '''误差'''
 last = self.size-1
 err = 0.0
 for x, y in zip(X, Y):
 self.forward(x)
 err += 0.5 * np.sum((self.a[last] - y)**2)
 err /= X.shape[0]
 err += sum([np.sum(w) for w in self.w[:last]**2])
 return err
 def backward(self, y):
 '''反向传播(在线)'''
 last = self.size - 1
 # 用样本 y 走一遍,刷新所有delta_w, delta_b
 self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
 for i in range(last-1, 1, -1):
 self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
 # 计算偏导
 p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
 p_b = self.data_a[i+1]
 # 更新 delta_w, delta_w
 self.delta_w[i] = self.delta_w[i] + p_w
 self.delta_b[i] = self.delta_b[i] + p_b
 def update(self, n_samples):
 '''更新权重参数'''
 last = self.size - 1
 for i in range(last):
 self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
 self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
 def fit(self, X, Y):
 '''拟合'''
 for i in range(self.n_iter):
 # 用所有样本,依次
 for x, y in zip(X, Y):
 self.forward(x) # 前向,更新 a, z;
 self.backward(y) # 后向,更新 delta_w, delta_b
 # 然后,更新 w, b
 self.update(len(X))
 # 计算误差
 err = self.err(X, Y)
 if err < self.error:
 break
 # 整千次显示误差(否则太无聊!)
 if i % 1000 == 0:
 print('iter: {}, error: {}'.format(i, err))
 def predict(self, X):
 '''预测'''
 last = self.size - 1
 res = []
 for x in X:
 self.forward(x)
 res.append(self.a[last])
 return np.array(res)
if __name__ == '__main__':
 nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
 X = np.array([[0.,0.], # 准备数据
 [0.,1.],
 [1.,0.],
 [1.,1.]])
 y = np.array([0,1,1,0])
 nn.fit(X,y) # 拟合
 print(nn.predict(X)) # 预测

Python numpy 定义 神经网络结构