本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下knn算法描述
本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下
knn算法描述
对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2.按照距离递增顺序排序 3.选取与该点距离最近的k个点 4.确定前k个点所在类别出现的频率 5.返回前k个点出现频率最高的类别作为该点的预测分类
knn算法实现
数据处理
#从文件中读取数据,返回的数据和分类均为二维数组
def loadDataSet(filename):
dataSet = []
labels = []
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split(",")
dataSet.append([float(lineArr[0]),float(lineArr[1])])
labels.append([float(lineArr[2])])
return dataSet , labels
knn算法
#计算两个向量之间的欧氏距离
def calDist(X1 , X2):
sum = 0
for x1 , x2 in zip(X1 , X2):
sum += (x1 - x2) ** 2
return sum ** 0.5
def knn(data , dataSet , labels , k):
n = shape(dataSet)[0]
for i in range(n):
dist = calDist(data , dataSet[i])
#只记录两点之间的距离和已知点的类别
labels[i].append(dist)
#按照距离递增排序
labels.sort(key=lambda x:x[1])
count = {}
#统计每个类别出现的频率
for i in range(k):
key = labels[i][0]
if count.has_key(key):
count[key] += 1
else : count[key] = 1
#按频率递减排序
sortCount = sorted(count.items(),key=lambda item:item[1],reverse=True)
return sortCount[0][0]#返回频率最高的key,即label
结果测试
已知类别数据(来源于西瓜书+虚构)
0.697,0.460,1 0.774,0.376,1 0.720,0.330,1 0.634,0.264,1 0.608,0.318,1 0.556,0.215,1 0.403,0.237,1 0.481,0.149,1 0.437,0.211,1 0.525,0.186,1 0.666,0.091,0 0.639,0.161,0 0.657,0.198,0 0.593,0.042,0 0.719,0.103,0 0.671,0.196,0 0.703,0.121,0 0.614,0.116,0
绘图方法
def drawPoints(data , dataSet, labels):
xcord1 = [];
ycord1 = [];
xcord2 = [];
ycord2 = [];
for i in range(shape(dataSet)[0]):
if labels[i][0] == 0:
xcord1.append(dataSet[i][0])
ycord1.append(dataSet[i][1])
if labels[i][0] == 1:
xcord2.append(dataSet[i][0])
ycord2.append(dataSet[i][1])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='blue', marker='s',label=0)
ax.scatter(xcord2, ycord2, s=30, c='green',label=1)
ax.scatter(data[0], data[1], s=30, c='red',label="testdata")
plt.legend(loc='upper right')
plt.show()
测试代码
dataSet , labels = loadDataSet('dataSet.txt')
data = [0.6767,0.2122]
drawPoints(data , dataSet, labels)
newlabels = knn(data, dataSet , labels , 5)
print newlabels
运行结果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
python knn