本文实例为大家分享了Python人脸识别的具体代码,供大家参考,具体内容如下1.利用opencv库s
本文实例为大家分享了Python人脸识别的具体代码,供大家参考,具体内容如下
1.利用opencv库
sudo apt-get install libopencv-*
sudo apt-get install python-opencv
sudo apt-get install python-numpy
2 .Python实现
import os
import os
from PIL import Image,ImageDraw
import cv
def detect_object(image):
grayscale = cv.CreateImage((image.width,image.height),8,1)#创建空的灰度值图片
cv.CvtColor(image,grayscale,cv.CV_BGR2GRAY)
cascade=cv.Load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt_tree.xml")#记载特征值库,此目录下还有好多库可以选用
rect=cv.HaarDetectObjects(grayscale,cascade,cv.CreateMemStorage(),1.1,2,cv.CV_HAAR_DO_CANNY_PRUNING,(20,20))
result=[]#标记位置
for r in rect:
result.append((r[0][0],r[0][1],r[0][0]+r[0][2],r[0][1]+r[0][3]))
return result
def process(infile):
image = cv.LoadImage(infile)
if image:
faces = detect_object(image)
im = Image.open(infile)
path = os.path.abspath(infile)
save_path = os.path.splitext(path)[0]+"_face"
try:
os.mkdir(save_path)
except:
pass
if faces:
draw = ImageDraw.Draw(im)
count=0
for f in faces:
count+=1
draw.rectangle(f,outline=(255,0,0))
a=im.crop(f)
file_name=os.path.join(save_path,str(count)+".jpg")
a.save(file_name)
drow_save_path = os.path.join(save_path,"out.jpg")
im.save(drow_save_path,"JPEG",quality=80)
else:
print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
process("test3.jpg")
3.效果对比
4.参考资料
python使用opencv进行人脸识别
Python+OpenCV人脸检测原理及示例详解
python利用OpenCV2实现人脸检测
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
Python 人脸识别