对于opencv它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别参考
对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别
参考了网上许多资料
假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。
项目代码结构:
dataSet : 存储训练用的图片,他由data_gen生成,当然也可以修改代码由其他方式生成
haarcascade_frontalface_alt.xml 、 haarcascade_frontalface_default.xml: 用于人脸检测的haar分类器,网上普遍说第一个效果更好,第二个运行速度更快
data_gen.py:生成我们所需的数据
trainer.py: 训练数据集
train.yml: 由train.py生成的人脸识别模型,供后面的人脸识别使用
recognize.py:视频中的人脸识别
data_gen.py
连续拍20张照片当作训练数据,每个人建立一组数据
import cv2
detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
cap = cv2.VideoCapture(0)
sampleNum = 0
Id = input('enter your id: ')
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = detector.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
# incrementing sample number
sampleNum = sampleNum + 1
# saving the captured face in the dataset folder
cv2.imwrite("dataSet/User." + str(Id) + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) #
cv2.imshow('frame', img)
# wait for 100 miliseconds
if cv2.waitKey(100) & 0xFF == ord('q'):
break
# break if the sample number is morethan 20
elif sampleNum > 20:
break
cap.release()
cv2.destroyAllWindows()
train.py
训练数据
import cv2
import os
import numpy as np
from PIL import Image
# recognizer = cv2.createLBPHFaceRecognizer()
detector = cv2.CascadeClassifier("/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()
def get_images_and_labels(path):
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
face_samples = []
ids = []
for image_path in image_paths:
image = Image.open(image_path).convert('L')
image_np = np.array(image, 'uint8')
if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
continue
image_id = int(os.path.split(image_path)[-1].split(".")[1])
faces = detector.detectMultiScale(image_np)
for (x, y, w, h) in faces:
face_samples.append(image_np[y:y + h, x:x + w])
ids.append(image_id)
return face_samples, ids
Faces, Ids = get_images_and_labels('dataSet')
recognizer.train(Faces, np.array(Ids))
recognizer.save('trainner.yml')
recognize.py
下面就是根据训练好的模型进行人脸识别,根据之前生成数据的编号,可以填入相对应的人名,例如以下示例我训练了三组人的数据
import cv2
import numpy as np
recognizer = cv2.face.LBPHFaceRecognizer_create()
# recognizer = cv2.createLBPHFaceRecognizer() # in OpenCV 2
recognizer.read('/Users/qiuchenglin/PycharmProjects/face_recognize/trainner.yml')
# recognizer.load('trainner/trainner.yml') # in OpenCV 2
cascade_path = "/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)
cam = cv2.VideoCapture(0)
# font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 1, 1) # in OpenCV 2
font = cv2.FONT_HERSHEY_SIMPLEX
while True:
ret, im = cam.read()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 5)
for (x, y, w, h) in faces:
cv2.rectangle(im, (x - 50, y - 50), (x + w + 50, y + h + 50), (225, 0, 0), 2)
img_id, conf = recognizer.predict(gray[y:y + h, x:x + w])
if conf > 50:
if img_id == 1:
img_id = 'liuzb'
elif img_id == 2:
img_id = 'linqc'
elif img_id == 3:
img_id = 'keaibao'
else:
img_id = "Unknown"
# cv2.cv.PutText(cv2.cv.fromarray(im), str(Id), (x, y + h), font, 255)
cv2.putText(im, str(img_id), (x, y), font, 1, (0, 255, 0), 1)
cv2.imshow('im', im)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cam.release()
cv2.destroyAllWindows()
简单的一个人脸识别就完成了,只能说准确率没有非常高。
之后想办法进行提高。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
opencv 人脸识别