python

超轻量级php框架startmvc

python+matplotlib实现礼盒柱状图实例代码

更新时间:2020-05-18 08:36:01 作者:startmvc
演示结果:完整代码:importmatplotlib.pyplotaspltimportnumpyasnpfrommatplotlib.imageimportBboxImagefrommatplotl

演示结果:

完整代码:


import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage

from matplotlib._png import read_png
import matplotlib.colors
from matplotlib.cbook import get_sample_data


class RibbonBox(object):

 original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",
 asfileobj=False))
 cut_location = 70
 b_and_h = original_image[:, :, 2]
 color = original_image[:, :, 2] - original_image[:, :, 0]
 alpha = original_image[:, :, 3]
 nx = original_image.shape[1]

 def __init__(self, color):
 rgb = matplotlib.colors.to_rgba(color)[:3]

 im = np.empty(self.original_image.shape,
 self.original_image.dtype)

 im[:, :, :3] = self.b_and_h[:, :, np.newaxis]
 im[:, :, :3] -= self.color[:, :, np.newaxis]*(1. - np.array(rgb))
 im[:, :, 3] = self.alpha

 self.im = im

 def get_stretched_image(self, stretch_factor):
 stretch_factor = max(stretch_factor, 1)
 ny, nx, nch = self.im.shape
 ny2 = int(ny*stretch_factor)

 stretched_image = np.empty((ny2, nx, nch),
 self.im.dtype)
 cut = self.im[self.cut_location, :, :]
 stretched_image[:, :, :] = cut
 stretched_image[:self.cut_location, :, :] = \
 self.im[:self.cut_location, :, :]
 stretched_image[-(ny - self.cut_location):, :, :] = \
 self.im[-(ny - self.cut_location):, :, :]

 self._cached_im = stretched_image
 return stretched_image


class RibbonBoxImage(BboxImage):
 zorder = 1

 def __init__(self, bbox, color,
 cmap=None,
 norm=None,
 interpolation=None,
 origin=None,
 filternorm=1,
 filterrad=4.0,
 resample=False,
 **kwargs
 ):

 BboxImage.__init__(self, bbox,
 cmap=cmap,
 norm=norm,
 interpolation=interpolation,
 origin=origin,
 filternorm=filternorm,
 filterrad=filterrad,
 resample=resample,
 **kwargs
 )

 self._ribbonbox = RibbonBox(color)
 self._cached_ny = None

 def draw(self, renderer, *args, **kwargs):

 bbox = self.get_window_extent(renderer)
 stretch_factor = bbox.height / bbox.width

 ny = int(stretch_factor*self._ribbonbox.nx)
 if self._cached_ny != ny:
 arr = self._ribbonbox.get_stretched_image(stretch_factor)
 self.set_array(arr)
 self._cached_ny = ny

 BboxImage.draw(self, renderer, *args, **kwargs)


if 1:
 from matplotlib.transforms import Bbox, TransformedBbox
 from matplotlib.ticker import ScalarFormatter

 # Fixing random state for reproducibility
 np.random.seed(19680801)

 fig, ax = plt.subplots()

 years = np.arange(2004, 2009)
 box_colors = [(0.8, 0.2, 0.2),
 (0.2, 0.8, 0.2),
 (0.2, 0.2, 0.8),
 (0.7, 0.5, 0.8),
 (0.3, 0.8, 0.7),
 ]
 heights = np.random.random(years.shape) * 7000 + 3000

 fmt = ScalarFormatter(useOffset=False)
 ax.xaxis.set_major_formatter(fmt)

 for year, h, bc in zip(years, heights, box_colors):
 bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h)
 bbox = TransformedBbox(bbox0, ax.transData)
 rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")

 ax.add_artist(rb_patch)

 ax.annotate(r"%d" % (int(h/100.)*100),
 (year, h), va="bottom", ha="center")

 patch_gradient = BboxImage(ax.bbox,
 interpolation="bicubic",
 zorder=0.1,
 )
 gradient = np.zeros((2, 2, 4), dtype=float)
 gradient[:, :, :3] = [1, 1, 0.]
 gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]] # alpha channel
 patch_gradient.set_array(gradient)
 ax.add_artist(patch_gradient)

 ax.set_xlim(years[0] - 0.5, years[-1] + 0.5)
 ax.set_ylim(0, 10000)

 fig.savefig('ribbon_box.png')
 plt.show()

总结

以上就是本文关于python+matplotlib实现礼盒柱状图实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

matplotlib 柱状图 matplotlib画柱状图 matplotlib横向柱状图