如下所示:#-*-coding:UTF-8-*-importjieba.possegimporttensorflowastfimportpandasaspdimportcsvimportmath"""1.必須
如下所示:
# -*- coding: UTF-8 -*-
import jieba.posseg
import tensorflow as tf
import pandas as pd
import csv
import math
"""
1.必須獲取CSV文件夾(ID:文本)
2.返回(ID:分词后的文本)
"""
flags = tf.app.flags
flags.DEFINE_string("train_file_address","D:/NLPWORD/cut_word_test/hzytest.csv","添加训练数据文件")
flags.DEFINE_string("result_file_address","D:/NLPWORD/cut_word_test/hzytest_result.csv","生成结果数据文件")
FLAGS = tf.app.flags.FLAGS
def cut_word(train_data):
"""
把数据按照行进行遍历,然后把结果按照行写在csv中
:return:分词结果list
"""
jieba.load_userdict("newdict.txt")
with open(FLAGS.result_file_address, "w", encoding='utf8') as csvfile:
writer = csv.writer(csvfile)
for row in train_data.index:
datas = train_data.loc[row].values[1]
if isinstance(datas,str) or not math.isnan(datas):
words = jieba.posseg.cut(datas)
line = ''
for word in words:
line = line + word.word + " "
writer.writerow([train_data.loc[row].values[0], line])
def main(_):
data = pd.read_csv(FLAGS.train_file_address)
cut_word(data)
if __name__ == "__main__":
tf.app.run(main)
以上这篇python处理csv中的空值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
python csv 空值