python

超轻量级php框架startmvc

python实现感知器算法(批处理)

更新时间:2020-06-21 16:00:01 作者:startmvc
本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下先创建

本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下

先创建感知器类:用于二分类


# -*- coding: utf-8 -*-
 
import numpy as np
 
 
class Perceptron(object):
 """
 感知器:用于二分类
 参照改写 https://blog.csdn.net/simple_the_best/article/details/54619495
 
 属性:
 w0:偏差
 w:权向量
 learning_rate:学习率
 threshold:准则阈值
 """
 
 def __init__(self,learning_rate=0.01,threshold=0.001):
 self.learning_rate=learning_rate
 self.threshold=threshold
 
 def train(self,x,y):
 """训练
 参数:
 x:样本,维度为n*m(样本有m个特征,x输入就是m维),样本数量为n
 y:类标,维度为n*1,取值1和-1(正样本和负样本)
 
 返回:
 self:object
 """
 self.w0=0.0
 self.w=np.full(x.shape[1],0.0)
 
 k=0
 while(True):
 k+=1
 dJw0=0.0
 dJw=np.zeros(x.shape[1])
 err=0.0
 for i in range(0,x.shape[0]):
 if not (y[i]==1 or y[i]==-1):
 print("类标只能为1或-1!请核对!")
 break
 update=self.learning_rate*0.5*(y[i]-self.predict(x[i]))
 dJw0+=update
 dJw+=update*x[i]
 err+=np.abs(0.5*(y[i]-self.predict(x[i])))
 self.w0 += dJw0
 self.w += dJw
 if np.abs(np.sum(self.learning_rate*dJw))<self.threshold or k>500:
 print("迭代次数:",k," 错分样本数:",err)
 break
 return self
 
 
 def predict(self,x):
 """预测类别
 参数:
 x:样本,1*m维,1个样本,m维特征
 
 返回:
 yhat:预测的类标号,1或者-1,1代表正样本,-1代表负样本
 """
 if np.matmul(self.w,x.T)+self.w0>0:
 yhat=1
 else:
 yhat=-1
 return yhat 
 
 def predict_value(self,x):
 """预测值
 参数:
 x:样本,1*m维,1个样本,m维特征
 
 返回:
 y:预测值
 """
 y=np.matmul(self.w,x.T)+self.w0
 return y

然后为Iris数据集创建一个Iris类,用于产生5折验证所需要的数据,并且能产生不同样本数量的数据集。


# -*- coding: utf-8 -*-
"""
Author:CommissarMa
2018年5月23日 16点52分
"""
import numpy as np
import scipy.io as sio
 
 
class Iris(object):
 """Iris数据集
 参数:
 data:根据size裁剪出来的iris数据集
 size:每种类型的样本数量
 way:one against the rest || one against one
 
 注意:
 此处规定5折交叉验证(5-cv),所以每种类型样本的数量要是5的倍数
 多分类方式:one against the rest
 """
 
 def __init__(self,size=50,way="one against the rest"):
 """
 size:每种类型的样本数量
 """
 data=sio.loadmat("C:\\Users\\CommissarMa\\Desktop\\模式识别\\课件ppt\\PR实验内容\\iris_data.mat")
 iris_data=data['iris_data']#iris_data:原数据集,shape:150*4,1-50个样本为第一类,51-100个样本为第二类,101-150个样本为第三类
 self.size=size
 self.way=way
 self.data=np.zeros((size*3,4))
 for r in range(0,size*3):
 self.data[r]=iris_data[int(r/size)*50+r%size]
 
 
 def generate_train_data(self,index_fold,index_class,neg_class=None):
 """
 index_fold:5折验证的第几折,范围:0,1,2,3,4
 index_class:第几类作为正类,类别号:负类样本为-1,正类样本为1
 """
 if self.way=="one against the rest":
 fold_size=int(self.size/5)#将每类样本分成5份
 train_data=np.zeros((fold_size*4*3,4))
 label_data=np.full((fold_size*4*3),-1)
 for r in range(0,fold_size*4*3):
 n_class=int(r/(fold_size*4))#第几类
 n_fold=int((r%(fold_size*4))/fold_size)#第几折
 n=(r%(fold_size*4))%fold_size#第几个
 if n_fold<index_fold:
 train_data[r]=self.data[n_class*self.size+n_fold*fold_size+n]
 else:
 train_data[r]=self.data[n_class*self.size+(n_fold+1)*fold_size+n]
 
 label_data[fold_size*4*index_class:fold_size*4*(index_class+1)]=1
 elif self.way=="one against one":
 if neg_class==None:
 print("one against one模式下需要提供负类的序号!")
 return
 else:
 fold_size=int(self.size/5)#将每类样本分成5份
 train_data=np.zeros((fold_size*4*2,4))
 label_data=np.full((fold_size*4*2),-1)
 for r in range(0,fold_size*4*2):
 n_class=int(r/(fold_size*4))#第几类
 n_fold=int((r%(fold_size*4))/fold_size)#第几折
 n=(r%(fold_size*4))%fold_size#第几个
 if n_class==0:#放正类样本
 if n_fold<index_fold:
 train_data[r]=self.data[index_class*self.size+n_fold*fold_size+n]
 else:
 train_data[r]=self.data[index_class*self.size+(n_fold+1)*fold_size+n]
 if n_class==1:#放负类样本
 if n_fold<index_fold:
 train_data[r]=self.data[neg_class*self.size+n_fold*fold_size+n]
 else:
 train_data[r]=self.data[neg_class*self.size+(n_fold+1)*fold_size+n]
 label_data[0:fold_size*4]=1
 else:
 print("多分类方式错误!只能为one against one 或 one against the rest!")
 return
 
 return train_data,label_data
 
 
 
 def generate_test_data(self,index_fold):
 """生成测试数据
 index_fold:5折验证的第几折,范围:0,1,2,3,4
 
 返回值:
 test_data:对应于第index_fold折的测试数据
 label_data:类别号为0,1,2
 """
 fold_size=int(self.size/5)#将每类样本分成5份
 test_data=np.zeros((fold_size*3,4))
 label_data=np.zeros(fold_size*3)
 for r in range(0,fold_size*3):
 test_data[r]=self.data[int(int(r/fold_size)*self.size)+int(index_fold*fold_size)+r%fold_size]
 label_data[0:fold_size]=0
 label_data[fold_size:fold_size*2]=1
 label_data[fold_size*2:fold_size*3]=2
 
 return test_data,label_data

然后我们进行训练测试,先使用one against the rest策略:


# -*- coding: utf-8 -*-
 
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
 
if __name__=="__main__":
 iris=Iris(size=50,way="one against the rest")
 
 correct_all=0
 for n_fold in range(0,5):
 p=[Perceptron(),Perceptron(),Perceptron()]
 for c in range(0,3):
 x,y=iris.generate_train_data(index_fold=n_fold,index_class=c)
 p[c].train(x,y)
 #训练完毕,开始测试
 correct=0
 x_test,y_test=iris.generate_test_data(index_fold=n_fold)
 num=len(x_test)
 for i in range(0,num):
 maxvalue=max(p[0].predict_value(x_test[i]),p[1].predict_value(x_test[i]),
 p[2].predict_value(x_test[i]))
 if maxvalue==p[int(y_test[i])].predict_value(x_test[i]):
 correct+=1
 print("错分数量:",num-correct,"错误率:",(num-correct)/num)
 correct_all+=correct
 print("平均错误率:",(num*5-correct_all)/(num*5))

然后使用one against one 策略去训练测试:


# -*- coding: utf-8 -*-
 
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
 
if __name__=="__main__":
 iris=Iris(size=10,way="one against one")
 
 correct_all=0
 for n_fold in range(0,5):
 #训练
 p01=Perceptron()#0类和1类比较的判别器
 p02=Perceptron()
 p12=Perceptron()
 x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=1)
 p01.train(x,y)
 x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=2)
 p02.train(x,y)
 x,y=iris.generate_train_data(index_fold=n_fold,index_class=1,neg_class=2)
 p12.train(x,y)
 #测试
 correct=0
 x_test,y_test=iris.generate_test_data(index_fold=n_fold)
 num=len(x_test)
 for i in range(0,num):
 vote0=0
 vote1=0
 vote2=0
 if p01.predict_value(x_test[i])>0:
 vote0+=1
 else:
 vote1+=1
 if p02.predict_value(x_test[i])>0:
 vote0+=1
 else:
 vote2+=1
 if p12.predict_value(x_test[i])>0:
 vote1+=1
 else:
 vote2+=1
 
 if vote0==max(vote0,vote1,vote2) and int(vote0)==int(y_test[i]):
 correct+=1
 elif vote1==max(vote0,vote1,vote2) and int(vote1)==int(y_test[i]):
 correct+=1
 elif vote2==max(vote0,vote1,vote2) and int(vote2)==int(y_test[i]):
 correct+=1
 print("错分数量:",num-correct,"错误率:",(num-correct)/num)
 correct_all+=correct
 print("平均错误率:",(num*5-correct_all)/(num*5))

实验结果如图所示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python 感知器