本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下先创建
本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下
先创建感知器类:用于二分类
# -*- coding: utf-8 -*-
import numpy as np
class Perceptron(object):
"""
感知器:用于二分类
参照改写 https://blog.csdn.net/simple_the_best/article/details/54619495
属性:
w0:偏差
w:权向量
learning_rate:学习率
threshold:准则阈值
"""
def __init__(self,learning_rate=0.01,threshold=0.001):
self.learning_rate=learning_rate
self.threshold=threshold
def train(self,x,y):
"""训练
参数:
x:样本,维度为n*m(样本有m个特征,x输入就是m维),样本数量为n
y:类标,维度为n*1,取值1和-1(正样本和负样本)
返回:
self:object
"""
self.w0=0.0
self.w=np.full(x.shape[1],0.0)
k=0
while(True):
k+=1
dJw0=0.0
dJw=np.zeros(x.shape[1])
err=0.0
for i in range(0,x.shape[0]):
if not (y[i]==1 or y[i]==-1):
print("类标只能为1或-1!请核对!")
break
update=self.learning_rate*0.5*(y[i]-self.predict(x[i]))
dJw0+=update
dJw+=update*x[i]
err+=np.abs(0.5*(y[i]-self.predict(x[i])))
self.w0 += dJw0
self.w += dJw
if np.abs(np.sum(self.learning_rate*dJw))<self.threshold or k>500:
print("迭代次数:",k," 错分样本数:",err)
break
return self
def predict(self,x):
"""预测类别
参数:
x:样本,1*m维,1个样本,m维特征
返回:
yhat:预测的类标号,1或者-1,1代表正样本,-1代表负样本
"""
if np.matmul(self.w,x.T)+self.w0>0:
yhat=1
else:
yhat=-1
return yhat
def predict_value(self,x):
"""预测值
参数:
x:样本,1*m维,1个样本,m维特征
返回:
y:预测值
"""
y=np.matmul(self.w,x.T)+self.w0
return y
然后为Iris数据集创建一个Iris类,用于产生5折验证所需要的数据,并且能产生不同样本数量的数据集。
# -*- coding: utf-8 -*-
"""
Author:CommissarMa
2018年5月23日 16点52分
"""
import numpy as np
import scipy.io as sio
class Iris(object):
"""Iris数据集
参数:
data:根据size裁剪出来的iris数据集
size:每种类型的样本数量
way:one against the rest || one against one
注意:
此处规定5折交叉验证(5-cv),所以每种类型样本的数量要是5的倍数
多分类方式:one against the rest
"""
def __init__(self,size=50,way="one against the rest"):
"""
size:每种类型的样本数量
"""
data=sio.loadmat("C:\\Users\\CommissarMa\\Desktop\\模式识别\\课件ppt\\PR实验内容\\iris_data.mat")
iris_data=data['iris_data']#iris_data:原数据集,shape:150*4,1-50个样本为第一类,51-100个样本为第二类,101-150个样本为第三类
self.size=size
self.way=way
self.data=np.zeros((size*3,4))
for r in range(0,size*3):
self.data[r]=iris_data[int(r/size)*50+r%size]
def generate_train_data(self,index_fold,index_class,neg_class=None):
"""
index_fold:5折验证的第几折,范围:0,1,2,3,4
index_class:第几类作为正类,类别号:负类样本为-1,正类样本为1
"""
if self.way=="one against the rest":
fold_size=int(self.size/5)#将每类样本分成5份
train_data=np.zeros((fold_size*4*3,4))
label_data=np.full((fold_size*4*3),-1)
for r in range(0,fold_size*4*3):
n_class=int(r/(fold_size*4))#第几类
n_fold=int((r%(fold_size*4))/fold_size)#第几折
n=(r%(fold_size*4))%fold_size#第几个
if n_fold<index_fold:
train_data[r]=self.data[n_class*self.size+n_fold*fold_size+n]
else:
train_data[r]=self.data[n_class*self.size+(n_fold+1)*fold_size+n]
label_data[fold_size*4*index_class:fold_size*4*(index_class+1)]=1
elif self.way=="one against one":
if neg_class==None:
print("one against one模式下需要提供负类的序号!")
return
else:
fold_size=int(self.size/5)#将每类样本分成5份
train_data=np.zeros((fold_size*4*2,4))
label_data=np.full((fold_size*4*2),-1)
for r in range(0,fold_size*4*2):
n_class=int(r/(fold_size*4))#第几类
n_fold=int((r%(fold_size*4))/fold_size)#第几折
n=(r%(fold_size*4))%fold_size#第几个
if n_class==0:#放正类样本
if n_fold<index_fold:
train_data[r]=self.data[index_class*self.size+n_fold*fold_size+n]
else:
train_data[r]=self.data[index_class*self.size+(n_fold+1)*fold_size+n]
if n_class==1:#放负类样本
if n_fold<index_fold:
train_data[r]=self.data[neg_class*self.size+n_fold*fold_size+n]
else:
train_data[r]=self.data[neg_class*self.size+(n_fold+1)*fold_size+n]
label_data[0:fold_size*4]=1
else:
print("多分类方式错误!只能为one against one 或 one against the rest!")
return
return train_data,label_data
def generate_test_data(self,index_fold):
"""生成测试数据
index_fold:5折验证的第几折,范围:0,1,2,3,4
返回值:
test_data:对应于第index_fold折的测试数据
label_data:类别号为0,1,2
"""
fold_size=int(self.size/5)#将每类样本分成5份
test_data=np.zeros((fold_size*3,4))
label_data=np.zeros(fold_size*3)
for r in range(0,fold_size*3):
test_data[r]=self.data[int(int(r/fold_size)*self.size)+int(index_fold*fold_size)+r%fold_size]
label_data[0:fold_size]=0
label_data[fold_size:fold_size*2]=1
label_data[fold_size*2:fold_size*3]=2
return test_data,label_data
然后我们进行训练测试,先使用one against the rest策略:
# -*- coding: utf-8 -*-
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
if __name__=="__main__":
iris=Iris(size=50,way="one against the rest")
correct_all=0
for n_fold in range(0,5):
p=[Perceptron(),Perceptron(),Perceptron()]
for c in range(0,3):
x,y=iris.generate_train_data(index_fold=n_fold,index_class=c)
p[c].train(x,y)
#训练完毕,开始测试
correct=0
x_test,y_test=iris.generate_test_data(index_fold=n_fold)
num=len(x_test)
for i in range(0,num):
maxvalue=max(p[0].predict_value(x_test[i]),p[1].predict_value(x_test[i]),
p[2].predict_value(x_test[i]))
if maxvalue==p[int(y_test[i])].predict_value(x_test[i]):
correct+=1
print("错分数量:",num-correct,"错误率:",(num-correct)/num)
correct_all+=correct
print("平均错误率:",(num*5-correct_all)/(num*5))
然后使用one against one 策略去训练测试:
# -*- coding: utf-8 -*-
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
if __name__=="__main__":
iris=Iris(size=10,way="one against one")
correct_all=0
for n_fold in range(0,5):
#训练
p01=Perceptron()#0类和1类比较的判别器
p02=Perceptron()
p12=Perceptron()
x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=1)
p01.train(x,y)
x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=2)
p02.train(x,y)
x,y=iris.generate_train_data(index_fold=n_fold,index_class=1,neg_class=2)
p12.train(x,y)
#测试
correct=0
x_test,y_test=iris.generate_test_data(index_fold=n_fold)
num=len(x_test)
for i in range(0,num):
vote0=0
vote1=0
vote2=0
if p01.predict_value(x_test[i])>0:
vote0+=1
else:
vote1+=1
if p02.predict_value(x_test[i])>0:
vote0+=1
else:
vote2+=1
if p12.predict_value(x_test[i])>0:
vote1+=1
else:
vote2+=1
if vote0==max(vote0,vote1,vote2) and int(vote0)==int(y_test[i]):
correct+=1
elif vote1==max(vote0,vote1,vote2) and int(vote1)==int(y_test[i]):
correct+=1
elif vote2==max(vote0,vote1,vote2) and int(vote2)==int(y_test[i]):
correct+=1
print("错分数量:",num-correct,"错误率:",(num-correct)/num)
correct_all+=correct
print("平均错误率:",(num*5-correct_all)/(num*5))
实验结果如图所示:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
python 感知器