要对tensor进行操作,需要先启动一个Session,否则,我们无法对一个tensor比如一个tensor常量重
要对tensor进行操作,需要先启动一个Session,否则,我们无法对一个tensor比如一个tensor常量重新赋值或是做一些判断操作,所以如果将它转化为numpy数组就好处理了。下面一个小程序讲述了将tensor转化为numpy数组,以及又重新还原为tensor:
import tensorflow as tf
img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]]]],dtype=tf.float32)
img2 = tf.constant(value=[[[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]]]],dtype=tf.float32)
img = tf.concat(values=[img1,img2],axis=3)
sess=tf.Session()
#sess.run(tf.initialize_all_variables())
sess.run(tf.global_variables_initializer())
print("out1=",type(img))
#转化为numpy数组
img_numpy=img.eval(session=sess)
print("out2=",type(img_numpy))
#转化为tensor
img_tensor= tf.convert_to_tensor(img_numpy)
print("out2=",type(img_tensor))
输出:
out1= <class 'tensorflow.python.framework.ops.Tensor'> out2= <class 'numpy.ndarray'> out2= <class 'tensorflow.python.framework.ops.Tensor'>
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
tensor numpy 互相转换