python

超轻量级php框架startmvc

TensorFlow实现打印每一层的输出

更新时间:2020-08-22 18:00:01 作者:startmvc
在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt

在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件。


constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def,['net_loss/inference/encode/conv_output/conv_output'])
with tf.gfile.FastGFile('net_model.pb', mode='wb') as f:
 f.write(constant_graph.SerializeToString())

tf1.0中通过带weight的pb文件与get_tensor_by_name函数可以获取每一层的输出


import os
import os.path as ops
import argparse
import time
import math
 
import tensorflow as tf
import glob
import numpy as np
import matplotlib.pyplot as plt
import cv2
 
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
 
gragh_path = './model.pb'
image_path = './lvds1901.JPG'
inputtensorname = 'input_tensor:0'
tensorname = 'loss/inference/encode/resize_images/ResizeBilinear'
filepath='./net_output.txt'
HEIGHT=256
WIDTH=256
VGG_MEAN = [103.939, 116.779, 123.68]
 
with tf.Graph().as_default():
 graph_def = tf.GraphDef()
 with tf.gfile.GFile(gragh_path, 'rb') as fid:
 serialized_graph = fid.read()
 graph_def.ParseFromString(serialized_graph)
 
 tf.import_graph_def(graph_def, name='')
 
 image = cv2.imread(image_path)
 image = cv2.resize(image, (WIDTH, HEIGHT), interpolation=cv2.INTER_CUBIC)
 image_np = np.array(image)
 image_np = image_np - VGG_MEAN
 image_np_expanded = np.expand_dims(image_np, axis=0)
 
 with tf.Session() as sess:
 ops = tf.get_default_graph().get_operations()
 tensor_name = tensorname + ':0'
 tensor_dict = tf.get_default_graph().get_tensor_by_name(tensor_name)
 image_tensor = tf.get_default_graph().get_tensor_by_name(inputtensorname)
 output = sess.run(tensor_dict, feed_dict={image_tensor: image_np_expanded})
 
 ftxt = open(filepath,'w')
 transform = output.transpose(0, 3, 1, 2)
 transform = transform.flatten()
 weight_count = 0
 for i in transform:
 if weight_count % 10 == 0 and weight_count != 0:
 ftxt.write('\n')
 ftxt.write(str(i) + ',')
 weight_count += 1
 ftxt.close()

以上这篇TensorFlow实现打印每一层的输出就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

TensorFlow 打印 一层 输出