php教程

超轻量级php框架startmvc

PHP实现图的邻接矩阵表示及几种简单遍历算法分析

更新时间:2020-03-25 22:34:24 作者:startmvc
本文实例讲述了PHP实现图的邻接矩阵表示及几种简单遍历算法。分享给大家供大家参考,具

本文实例讲述了PHP实现图的邻接矩阵表示及几种简单遍历算法。分享给大家供大家参考,具体如下:

在web开发中图这种数据结构的应用比树要少很多,但在一些业务中也常有出现,下面介绍几种图的寻径算法,并用PHP加以实现.

佛洛依德算法,主要是在顶点集内,按点与点相邻边的权重做遍历,如果两点不相连则权重无穷大,这样通过多次遍历可以得到点到点的最短路径,逻辑上最好理解,实现也较为简单,时间复杂度为O(n^3);

迪杰斯特拉算法,OSPF中实现最短路由所用到的经典算法,djisktra算法的本质是贪心算法,不断的遍历扩充顶点路径集合S,一旦发现更短的点到点路径就替换S中原有的最短路径,完成所有遍历后S便是所有顶点的最短路径集合了.迪杰斯特拉算法的时间复杂度为O(n^2);

克鲁斯卡尔算法,在图内构造最小生成树,达到图中所有顶点联通.从而得到最短路径.时间复杂度为O(N*logN);


<?php
/**
 * PHP 实现图邻接矩阵
 */
class MGraph{
 private $vexs; //顶点数组
 private $arc; //边邻接矩阵,即二维数组
 private $arcData; //边的数组信息
 private $direct; //图的类型(无向或有向)
 private $hasList; //尝试遍历时存储遍历过的结点
 private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
 private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
 private $primVexs; //prim算法时保存顶点
 private $primArc; //prim算法时保存边
 private $krus;//kruscal算法时保存边的信息
 public function MGraph($vexs, $arc, $direct = 0){
 $this->vexs = $vexs;
 $this->arcData = $arc;
 $this->direct = $direct;
 $this->initalizeArc();
 $this->createArc();
 }
 private function initalizeArc(){
 foreach($this->vexs as $value){
 foreach($this->vexs as $cValue){
 $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
 }
 }
 }
 //创建图 $direct:0表示无向图,1表示有向图
 private function createArc(){
 foreach($this->arcData as $key=>$value){
 $strArr = str_split($key);
 $first = $strArr[0];
 $last = $strArr[1];
 $this->arc[$first][$last] = $value;
 if(!$this->direct){
 $this->arc[$last][$first] = $value;
 }
 }
 }
 //floyd算法
 public function floyd(){
 $path = array();//路径数组
 $distance = array();//距离数组
 foreach($this->arc as $key=>$value){
 foreach($value as $k=>$v){
 $path[$key][$k] = $k;
 $distance[$key][$k] = $v;
 }
 }
 for($j = 0; $j < count($this->vexs); $j ++){
 for($i = 0; $i < count($this->vexs); $i ++){
 for($k = 0; $k < count($this->vexs); $k ++){
 if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
 $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
 $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
 }
 }
 }
 }
 return array($path, $distance);
 }
 //djikstra算法
 public function dijkstra(){
 $final = array();
 $pre = array();//要查找的结点的前一个结点数组
 $weight = array();//权值和数组
 foreach($this->arc[$this->vexs[0]] as $k=>$v){
 $final[$k] = 0;
 $pre[$k] = $this->vexs[0];
 $weight[$k] = $v;
 }
 $final[$this->vexs[0]] = 1;
 for($i = 0; $i < count($this->vexs); $i ++){
 $key = 0;
 $min = $this->infinity;
 for($j = 1; $j < count($this->vexs); $j ++){
 $temp = $this->vexs[$j];
 if($final[$temp] != 1 && $weight[$temp] < $min){
 $key = $temp;
 $min = $weight[$temp];
 }
 }
 $final[$key] = 1;
 for($j = 0; $j < count($this->vexs); $j ++){
 $temp = $this->vexs[$j];
 if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
 $pre[$temp] = $key;
 $weight[$temp] = $min + $this->arc[$key][$temp];
 }
 }
 }
 return $pre;
 }
 //kruscal算法
 private function kruscal(){
 $this->krus = array();
 foreach($this->vexs as $value){
 $krus[$value] = 0;
 }
 foreach($this->arc as $key=>$value){
 $begin = $this->findRoot($key);
 foreach($value as $k=>$v){
 $end = $this->findRoot($k);
 if($begin != $end){
 $this->krus[$begin] = $end;
 }
 }
 }
 }
 //查找子树的尾结点
 private function findRoot($node){
 while($this->krus[$node] > 0){
 $node = $this->krus[$node];
 }
 return $node;
 }
 //prim算法,生成最小生成树
 public function prim(){
 $this->primVexs = array();
 $this->primArc = array($this->vexs[0]=>0);
 for($i = 1; $i < count($this->vexs); $i ++){
 $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
 $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
 }
 for($i = 0; $i < count($this->vexs); $i ++){
 $min = $this->infinity;
 $key;
 foreach($this->vexs as $k=>$v){
 if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
 $key = $v;
 $min = $this->primArc[$v];
 }
 }
 $this->primArc[$key] = 0;
 foreach($this->arc[$key] as $k=>$v){
 if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
 $this->primArc[$k] = $v;
 $this->primVexs[$k] = $key;
 }
 }
 }
 return $this->primVexs;
 }
 //一般算法,生成最小生成树
 public function bst(){
 $this->primVexs = array($this->vexs[0]);
 $this->primArc = array();
 next($this->arc[key($this->arc)]);
 $key = NULL;
 $current = NULL;
 while(count($this->primVexs) < count($this->vexs)){
 foreach($this->primVexs as $value){
 foreach($this->arc[$value] as $k=>$v){
 if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
 if($key == NULL || $v < current($current)){
 $key = $k;
 $current = array($value . $k=>$v);
 }
 }
 }
 }
 $this->primVexs[] = $key;
 $this->primArc[key($current)] = current($current);
 $key = NULL;
 $current = NULL;
 }
 return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);
 }
 //一般遍历
 public function reserve(){
 $this->hasList = array();
 foreach($this->arc as $key=>$value){
 if(!in_array($key, $this->hasList)){
 $this->hasList[] = $key;
 }
 foreach($value as $k=>$v){
 if($v == 1 && !in_array($k, $this->hasList)){
 $this->hasList[] = $k;
 }
 }
 }
 foreach($this->vexs as $v){
 if(!in_array($v, $this->hasList))
 $this->hasList[] = $v;
 }
 return implode($this->hasList);
 }
 //广度优先遍历
 public function bfs(){
 $this->hasList = array();
 $this->queue = array();
 foreach($this->arc as $key=>$value){
 if(!in_array($key, $this->hasList)){
 $this->hasList[] = $key;
 $this->queue[] = $value;
 while(!empty($this->queue)){
 $child = array_shift($this->queue);
 foreach($child as $k=>$v){
 if($v == 1 && !in_array($k, $this->hasList)){
 $this->hasList[] = $k;
 $this->queue[] = $this->arc[$k];
 }
 }
 }
 }
 }
 return implode($this->hasList);
 }
 //执行深度优先遍历
 public function excuteDfs($key){
 $this->hasList[] = $key;
 foreach($this->arc[$key] as $k=>$v){
 if($v == 1 && !in_array($k, $this->hasList))
 $this->excuteDfs($k);
 }
 }
 //深度优先遍历
 public function dfs(){
 $this->hasList = array();
 foreach($this->vexs as $key){
 if(!in_array($key, $this->hasList))
 $this->excuteDfs($key);
 }
 return implode($this->hasList);
 }
 //返回图的二维数组表示
 public function getArc(){
 return $this->arc;
 }
 //返回结点个数
 public function getVexCount(){
 return count($this->vexs);
 }
}
$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值
$test = new MGraph($a, $b);
print_r($test->bst());

运行结果:


Array
(
 [vexs] => Array
 (
 [0] => a
 [1] => b
 [2] => f
 [3] => i
 [4] => c
 [5] => g
 [6] => h
 [7] => e
 [8] => d
 )
 [arc] => Array
 (
 [ab] => 10
 [af] => 11
 [bi] => 12
 [ic] => 8
 [bg] => 16
 [gh] => 19
 [he] => 7
 [hd] => 16
 )
)

PHP 邻接矩阵 遍历算法