聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象
聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好。
1、k均值聚类算法
k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述。首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中。然后将每个簇的质心更新为所有数据集的平均值。然后再进行第二次划分数据集,直到聚类结果不再变化为止。
伪代码为
随机创建k个簇质心 当任意一个点的簇分配发生改变时: 对数据集中的每个数据点: 对每个质心: 计算数据集到质心的距离 将数据集分配到最近距离质心对应的簇 对每一个簇,计算簇中所有点的均值并将均值作为质心
python实现
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(fileName):
dataMat = []
with open(fileName) as f:
for line in f.readlines():
line = line.strip().split('\t')
dataMat.append(line)
dataMat = np.array(dataMat).astype(np.float32)
return dataMat
def distEclud(vecA,vecB):
return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
m = np.shape(dataSet)[1]
center = np.mat(np.ones((k,m)))
for i in range(m):
centmin = min(dataSet[:,i])
centmax = max(dataSet[:,i])
center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m,2)))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = np.inf
minIndex = -1
for j in range(k):
distJI = distMeans(dataSet[i,:],centroids[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
for cent in range(k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
centroids[cent,:] = np.mean(ptsInClust,axis = 0)
return centroids,clusterAssment
data = loadDataSet('testSet.txt')
muCentroids, clusterAssing = kMeans(data,4)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A)
plt.show()
print(clusterAssing)
2、二分k均值算法
K均值算法可能会收敛到局部最小值,而非全局最小。一种用于度量聚类效果的指标为误差平方和(SSE)。因为取了平方,更加重视原理中心的点。为了克服k均值算法可能会收敛到局部最小值的问题,有人提出来二分k均值算法。 首先将所有点作为一个簇,然后将该簇一分为二,然后选择所有簇中对其划分能够最大程度减低SSE的值的簇,直到满足指定簇数为止。
伪代码
将所有点看成一个簇 计算SSE while 当簇数目小于k时: for 每一个簇: 计算总误差 在给定的簇上进行k均值聚类(k=2) 计算将该簇一分为二的总误差 选择使得误差最小的那个簇进行划分操作
python实现
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(fileName):
dataMat = []
with open(fileName) as f:
for line in f.readlines():
line = line.strip().split('\t')
dataMat.append(line)
dataMat = np.array(dataMat).astype(np.float32)
return dataMat
def distEclud(vecA,vecB):
return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
m = np.shape(dataSet)[1]
center = np.mat(np.ones((k,m)))
for i in range(m):
centmin = min(dataSet[:,i])
centmax = max(dataSet[:,i])
center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m,2)))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = np.inf
minIndex = -1
for j in range(k):
distJI = distMeans(dataSet[i,:],centroids[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
for cent in range(k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
centroids[cent,:] = np.mean(ptsInClust,axis = 0)
return centroids,clusterAssment
def biKmeans(dataSet,k,distMeans = distEclud):
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m,2)))
centroid0 = np.mean(dataSet,axis=0).tolist()
centList = [centroid0]
for j in range(m):
clusterAssment[j,1] = distMeans(dataSet[j,:],np.mat(centroid0))**2
while (len(centList)<k):
lowestSSE = np.inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:,0].A == i)[0],:]
centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,distMeans)
sseSplit = np.sum(splitClustAss[:,1])
sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A != i)[0],1])
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat.copy()
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
print('the best cent to split is ',bestCentToSplit)
# print('the len of the bestClust')
bestClustAss[np.nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
clusterAssment[np.nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss.copy()
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
return np.mat(centList),clusterAssment
data = loadDataSet('testSet2.txt')
muCentroids, clusterAssing = biKmeans(data,3)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A,cmap=plt.cm.Paired)
ax.scatter(muCentroids[:,0],muCentroids[:,1])
plt.show()
print(clusterAssing)
print(muCentroids)
代码及数据集下载:K-means
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
python kMeans