python

超轻量级php框架startmvc

Python基于OpenCV实现人脸检测并保存

更新时间:2020-07-17 05:24:01 作者:startmvc
本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体

本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下

安装opencv

如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处

导入opencv


import cv2

所有包都包含haarcascade文件。这个文件很重要!!! cv2.data.haarcascades可以用作数据文件夹的快捷方式。例如:


cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

代码


#-*- coding: utf-8 -*-
# import openCV的库
import cv2
import os, math, operator
from PIL import Image
from functools import reduce


###调用电脑摄像头检测人脸并截图

def CatchPICFromVideo(window_name, path_name):
 cv2.namedWindow(window_name)

 #电脑摄像头
 cap = cv2.VideoCapture(0)

 #告诉OpenCV使用人脸识别分类器
 classfier = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

 #检测人脸后要画的边框的颜色
 color = (0, 255, 0)

 while cap.isOpened():
 ok, frame = cap.read() #读取一帧数据
 if not ok:
 break

 grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将当前桢图像转换成灰度图像

 #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
 faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
 if len(faceRects) > 0: #大于0则检测到人脸
 for faceRect in faceRects: #单独框出每一张人脸
 x, y, w, h = faceRect

 #画出矩形框
 cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
 
 k = cv2.waitKey(100) #每0.1秒读一次键盘
 if k == ord("z") or k == ord("Z"): #如果输入z
 #将当前帧保存为图片
 img_name = path_name
 print(img_name)
 image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
 cv2.imwrite(img_name, image,[int(cv2.IMWRITE_PNG_COMPRESSION), 9])
 break 
 
 #显示图像
 cv2.imshow(window_name, frame)
 #退出摄像头界面
 c = cv2.waitKey(100)
 if c == ord("q") or c == ord("Q"): 
 break

 #释放摄像头并销毁所有窗口
 cap.release()
 cv2.destroyAllWindows()


os.system("cls") #清屏
recogname = "recogface.jpg" #预存的人脸文件
CatchPICFromVideo("get face",recogname)

功能:

虽然能框住人脸,但是效率还不是很高。 按Z或z可以将框住的人脸截取保存

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

Python OpenCV 人脸检测