python

超轻量级php框架startmvc

TensorFLow 不同大小图片的TFrecords存取实例

更新时间:2020-08-22 09:06:01 作者:startmvc
全部存入一个TFrecords文件,然后读取并显示第一张。不多写了,直接贴代码。fromPILimportImage

全部存入一个TFrecords文件,然后读取并显示第一张。

不多写了,直接贴代码。


from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


IMAGE_PATH = 'test/'
tfrecord_file = IMAGE_PATH + 'test.tfrecord'
writer = tf.python_io.TFRecordWriter(tfrecord_file)


def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def get_image_binary(filename):
 """ You can read in the image using tensorflow too, but it's a drag
 since you have to create graphs. It's much easier using Pillow and NumPy
 """
 image = Image.open(filename)
 image = np.asarray(image, np.uint8)
 shape = np.array(image.shape, np.int32)
 return shape, image.tobytes() # convert image to raw data bytes in the array.

def write_to_tfrecord(label, shape, binary_image, tfrecord_file):
 """ This example is to write a sample to TFRecord file. If you want to write
 more samples, just use a loop.
 """
 # write label, shape, and image content to the TFRecord file
 example = tf.train.Example(features=tf.train.Features(feature={
 'label': _int64_feature(label),
 'h': _int64_feature(shape[0]),
 'w': _int64_feature(shape[1]),
 'c': _int64_feature(shape[2]),
 'image': _bytes_feature(binary_image)
 }))
 writer.write(example.SerializeToString())


def write_tfrecord(label, image_file, tfrecord_file):
 shape, binary_image = get_image_binary(image_file)
 write_to_tfrecord(label, shape, binary_image, tfrecord_file)
 # print(shape)



def main():
 # assume the image has the label Chihuahua, which corresponds to class number 1
 label = [1,2]
 image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg']

 for i in range(2):
 write_tfrecord(label[i], image_files[i], tfrecord_file)
 writer.close()

 batch_size = 2

 filename_queue = tf.train.string_input_producer([tfrecord_file]) 
 reader = tf.TFRecordReader() 
 _, serialized_example = reader.read(filename_queue) 

 img_features = tf.parse_single_example( 
 serialized_example, 
 features={ 
 'label': tf.FixedLenFeature([], tf.int64), 
 'h': tf.FixedLenFeature([], tf.int64),
 'w': tf.FixedLenFeature([], tf.int64),
 'c': tf.FixedLenFeature([], tf.int64),
 'image': tf.FixedLenFeature([], tf.string), 
 }) 

 h = tf.cast(img_features['h'], tf.int32)
 w = tf.cast(img_features['w'], tf.int32)
 c = tf.cast(img_features['c'], tf.int32)

 image = tf.decode_raw(img_features['image'], tf.uint8) 
 image = tf.reshape(image, [h, w, c])

 label = tf.cast(img_features['label'],tf.int32) 
 label = tf.reshape(label, [1])

 # image = tf.image.resize_images(image, (500,500))
 #image, label = tf.train.batch([image, label], batch_size= batch_size) 


 with tf.Session() as sess:
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 image, label=sess.run([image, label])
 coord.request_stop()
 coord.join(threads)

 print(label)

 plt.figure()
 plt.imshow(image)
 plt.show()


if __name__ == '__main__':
 main()

全部存入一个TFrecords文件,然后按照batch_size读取,注意需要将图片变成一样大才能按照batch_size读取。


from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


IMAGE_PATH = 'test/'
tfrecord_file = IMAGE_PATH + 'test.tfrecord'
writer = tf.python_io.TFRecordWriter(tfrecord_file)


def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def get_image_binary(filename):
 """ You can read in the image using tensorflow too, but it's a drag
 since you have to create graphs. It's much easier using Pillow and NumPy
 """
 image = Image.open(filename)
 image = np.asarray(image, np.uint8)
 shape = np.array(image.shape, np.int32)
 return shape, image.tobytes() # convert image to raw data bytes in the array.

def write_to_tfrecord(label, shape, binary_image, tfrecord_file):
 """ This example is to write a sample to TFRecord file. If you want to write
 more samples, just use a loop.
 """
 # write label, shape, and image content to the TFRecord file
 example = tf.train.Example(features=tf.train.Features(feature={
 'label': _int64_feature(label),
 'h': _int64_feature(shape[0]),
 'w': _int64_feature(shape[1]),
 'c': _int64_feature(shape[2]),
 'image': _bytes_feature(binary_image)
 }))
 writer.write(example.SerializeToString())


def write_tfrecord(label, image_file, tfrecord_file):
 shape, binary_image = get_image_binary(image_file)
 write_to_tfrecord(label, shape, binary_image, tfrecord_file)
 # print(shape)



def main():
 # assume the image has the label Chihuahua, which corresponds to class number 1
 label = [1,2]
 image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg']

 for i in range(2):
 write_tfrecord(label[i], image_files[i], tfrecord_file)
 writer.close()

 batch_size = 2

 filename_queue = tf.train.string_input_producer([tfrecord_file]) 
 reader = tf.TFRecordReader() 
 _, serialized_example = reader.read(filename_queue) 

 img_features = tf.parse_single_example( 
 serialized_example, 
 features={ 
 'label': tf.FixedLenFeature([], tf.int64), 
 'h': tf.FixedLenFeature([], tf.int64),
 'w': tf.FixedLenFeature([], tf.int64),
 'c': tf.FixedLenFeature([], tf.int64),
 'image': tf.FixedLenFeature([], tf.string), 
 }) 

 h = tf.cast(img_features['h'], tf.int32)
 w = tf.cast(img_features['w'], tf.int32)
 c = tf.cast(img_features['c'], tf.int32)

 image = tf.decode_raw(img_features['image'], tf.uint8) 
 image = tf.reshape(image, [h, w, c])

 label = tf.cast(img_features['label'],tf.int32) 
 label = tf.reshape(label, [1])

 image = tf.image.resize_images(image, (224,224))
 image = tf.reshape(image, [224, 224, 3])
 image, label = tf.train.batch([image, label], batch_size= batch_size) 


 with tf.Session() as sess:
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 image, label=sess.run([image, label])
 coord.request_stop()
 coord.join(threads)

 print(image.shape)
 print(label)

 plt.figure()
 plt.imshow(image[0,:,:,0])
 plt.show()

 plt.figure()
 plt.imshow(image[0,:,:,1])
 plt.show()

 image1 = image[0,:,:,:]
 print(image1.shape)
 print(image1.dtype)
 im = Image.fromarray(np.uint8(image1)) #参考numpy和图片的互转:http://blog.csdn.net/zywvvd/article/details/72810360
 im.show()

if __name__ == '__main__':
 main()

输出是


(2, 224, 224, 3)
[[1]
 [2]]

第一张图片的三种显示(略)

封装成函数:


# -*- coding: utf-8 -*-
"""
Created on Fri Sep 8 14:38:15 2017

@author: wayne


"""


'''
本文参考了以下代码,在多个不同大小图片存取方面做了重新开发:
https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/09_tfrecord_example.py
http://blog.csdn.net/hjxu2016/article/details/76165559
https://stackoverflow.com/questions/41921746/tensorflow-varlenfeature-vs-fixedlenfeature
https://github.com/tensorflow/tensorflow/issues/10492

后续:
-存入多个TFrecords文件的例子见
http://blog.csdn.net/xierhacker/article/details/72357651
-如何作shuffle和数据增强
string_input_producer (需要理解tf的数据流,标签队列的工作方式等等)
http://blog.csdn.net/liuchonge/article/details/73649251
'''

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


IMAGE_PATH = 'test/'
tfrecord_file = IMAGE_PATH + 'test.tfrecord'
writer = tf.python_io.TFRecordWriter(tfrecord_file)


def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def get_image_binary(filename):
 """ You can read in the image using tensorflow too, but it's a drag
 since you have to create graphs. It's much easier using Pillow and NumPy
 """
 image = Image.open(filename)
 image = np.asarray(image, np.uint8)
 shape = np.array(image.shape, np.int32)
 return shape, image.tobytes() # convert image to raw data bytes in the array.

def write_to_tfrecord(label, shape, binary_image, tfrecord_file):
 """ This example is to write a sample to TFRecord file. If you want to write
 more samples, just use a loop.
 """
 # write label, shape, and image content to the TFRecord file
 example = tf.train.Example(features=tf.train.Features(feature={
 'label': _int64_feature(label),
 'h': _int64_feature(shape[0]),
 'w': _int64_feature(shape[1]),
 'c': _int64_feature(shape[2]),
 'image': _bytes_feature(binary_image)
 }))
 writer.write(example.SerializeToString())


def write_tfrecord(label, image_file, tfrecord_file):
 shape, binary_image = get_image_binary(image_file)
 write_to_tfrecord(label, shape, binary_image, tfrecord_file)


def read_and_decode(tfrecords_file, batch_size): 
 '''''read and decode tfrecord file, generate (image, label) batches 
 Args: 
 tfrecords_file: the directory of tfrecord file 
 batch_size: number of images in each batch 
 Returns: 
 image: 4D tensor - [batch_size, width, height, channel] 
 label: 1D tensor - [batch_size] 
 ''' 
 # make an input queue from the tfrecord file 

 filename_queue = tf.train.string_input_producer([tfrecord_file]) 
 reader = tf.TFRecordReader() 
 _, serialized_example = reader.read(filename_queue) 

 img_features = tf.parse_single_example( 
 serialized_example, 
 features={ 
 'label': tf.FixedLenFeature([], tf.int64), 
 'h': tf.FixedLenFeature([], tf.int64),
 'w': tf.FixedLenFeature([], tf.int64),
 'c': tf.FixedLenFeature([], tf.int64),
 'image': tf.FixedLenFeature([], tf.string), 
 }) 

 h = tf.cast(img_features['h'], tf.int32)
 w = tf.cast(img_features['w'], tf.int32)
 c = tf.cast(img_features['c'], tf.int32)

 image = tf.decode_raw(img_features['image'], tf.uint8) 
 image = tf.reshape(image, [h, w, c])

 label = tf.cast(img_features['label'],tf.int32) 
 label = tf.reshape(label, [1])

 ########################################################## 
 # you can put data augmentation here 
# distorted_image = tf.random_crop(images, [530, 530, img_channel])
# distorted_image = tf.image.random_flip_left_right(distorted_image)
# distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
# distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
# distorted_image = tf.image.resize_images(distorted_image, (imagesize,imagesize))
# float_image = tf.image.per_image_standardization(distorted_image)

 image = tf.image.resize_images(image, (224,224))
 image = tf.reshape(image, [224, 224, 3])
 #image, label = tf.train.batch([image, label], batch_size= batch_size) 

 image_batch, label_batch = tf.train.batch([image, label], 
 batch_size= batch_size, 
 num_threads= 64, 
 capacity = 2000) 
 return image_batch, tf.reshape(label_batch, [batch_size]) 

def read_tfrecord2(tfrecord_file, batch_size):
 train_batch, train_label_batch = read_and_decode(tfrecord_file, batch_size)

 with tf.Session() as sess:
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 train_batch, train_label_batch = sess.run([train_batch, train_label_batch])
 coord.request_stop()
 coord.join(threads)
 return train_batch, train_label_batch


def main():
 # assume the image has the label Chihuahua, which corresponds to class number 1
 label = [1,2]
 image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg']

 for i in range(2):
 write_tfrecord(label[i], image_files[i], tfrecord_file)
 writer.close()

 batch_size = 2
 # read_tfrecord(tfrecord_file) # 读取一个图
 train_batch, train_label_batch = read_tfrecord2(tfrecord_file, batch_size)

 print(train_batch.shape)
 print(train_label_batch)

 plt.figure()
 plt.imshow(train_batch[0,:,:,0])
 plt.show()

 plt.figure()
 plt.imshow(train_batch[0,:,:,1])
 plt.show()

 train_batch1 = train_batch[0,:,:,:]
 print(train_batch.shape)
 print(train_batch1.dtype)
 im = Image.fromarray(np.uint8(train_batch1)) #参考numpy和图片的互转:http://blog.csdn.net/zywvvd/article/details/72810360
 im.show()

if __name__ == '__main__':
 main()

以上这篇TensorFLow 不同大小图片的TFrecords存取实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

TensorFLow 图片 TFrecords 存取