python

超轻量级php框架startmvc

Tensorflow实现AlexNet卷积神经网络及运算时间评测

更新时间:2020-06-03 06:24:01 作者:startmvc
本文实例为大家分享了Tensorflow实现AlexNet卷积神经网络的具体实现代码,供大家参考,具体

本文实例为大家分享了Tensorflow实现AlexNet卷积神经网络的具体实现代码,供大家参考,具体内容如下

之前已经介绍过了AlexNet的网络构建了,这次主要不是为了训练数据,而是为了对每个batch的前馈(Forward)和反馈(backward)的平均耗时进行计算。在设计网络的过程中,分类的结果很重要,但是运算速率也相当重要。尤其是在跟踪(Tracking)的任务中,如果使用的网络太深,那么也会导致实时性不好。


from datetime import datetime
import math
import time
import tensorflow as tf

batch_size = 32
num_batches = 100

def print_activations(t):
 print(t.op.name, '', t.get_shape().as_list())

def inference(images):
 parameters = []

 with tf.name_scope('conv1') as scope:
 kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype = tf.float32, stddev = 1e-1), name = 'weights')
 conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding = 'SAME')
 biases = tf.Variable(tf.constant(0.0, shape = [64], dtype = tf.float32), trainable = True, name = 'biases')
 bias = tf.nn.bias_add(conv, biases)
 conv1 = tf.nn.relu(bias, name = scope)
 print_activations(conv1)
 parameters += [kernel, biases]

 lrn1 = tf.nn.lrn(conv1, 4, bias = 1.0, alpha = 0.001 / 9, beta = 0.75, name = 'lrn1')
 pool1 = tf.nn.max_pool(lrn1, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'VALID', name = 'pool1')
 print_activations(pool1)

 with tf.name_scope('conv2') as scope:
 kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype = tf.float32, stddev = 1e-1), name = 'weights')
 conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding = 'SAME')
 biases = tf.Variable(tf.constant(0.0, shape = [192], dtype = tf.float32), trainable = True, name = 'biases')
 bias = tf.nn.bias_add(conv, biases)
 conv2 = tf.nn.relu(bias, name = scope)
 parameters += [kernel, biases]
 print_activations(conv2)

 lrn2 = tf.nn.lrn(conv2, 4, bias = 1.0, alpha = 0.001 / 9, beta = 0.75, name = 'lrn2')
 pool2 = tf.nn.max_pool(lrn2, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'VALID', name = 'pool2')
 print_activations(pool2)

 with tf.name_scope('conv3') as scope:
 kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384], dtype = tf.float32, stddev = 1e-1), name = 'weights')
 conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding = 'SAME')
 biases = tf.Variable(tf.constant(0.0, shape = [384], dtype = tf.float32), trainable = True, name = 'biases')
 bias = tf.nn.bias_add(conv, biases)
 conv3 = tf.nn.relu(bias, name = scope)
 parameters += [kernel, biases]
 print_activations(conv3)

 with tf.name_scope('conv4') as scope:
 kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], dtype = tf.float32, stddev = 1e-1), name = 'weights')
 conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding = 'SAME')
 biases = tf.Variable(tf.constant(0.0, shape = [256], dtype = tf.float32), trainable = True, name = 'biases')
 bias = tf.nn.bias_add(conv, biases)
 conv4 = tf.nn.relu(bias, name = scope)
 parameters += [kernel, biases]
 print_activations(conv4)

 with tf.name_scope('conv5') as scope:
 kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype = tf.float32, stddev = 1e-1), name = 'weights')
 conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding = 'SAME')
 biases = tf.Variable(tf.constant(0.0, shape = [256], dtype = tf.float32), trainable = True, name = 'biases')
 bias = tf.nn.bias_add(conv, biases)
 conv5 = tf.nn.relu(bias, name = scope)
 parameters += [kernel, biases]
 print_activations(conv5)

 pool5 = tf.nn.max_pool(conv5, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'VALID', name = 'pool5')
 print_activations(pool5)

 return pool5, parameters

def time_tensorflow_run(session, target, info_string):
 num_steps_burn_in = 10
 total_duration = 0.0
 total_duration_squared = 0.0

 for i in range(num_batches + num_steps_burn_in):
 start_time = time.time()
 _ = session.run(target)
 duration = time.time() - start_time
 if i >= num_steps_burn_in:
 if not i % 10:
 print('%s: step %d, duration = %.3f' %(datetime.now(), i - num_steps_burn_in, duration))
 total_duration += duration
 total_duration_squared += duration * duration

 mn = total_duration / num_batches
 vr = total_duration_squared / num_batches - mn * mn
 sd = math.sqrt(vr)
 print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %(datetime.now(), info_string, num_batches, mn, sd))

def run_benchmark():
 with tf.Graph().as_default():
 image_size = 224
 images = tf.Variable(tf.random_normal([batch_size, image_size, image_size, 3], dtype = tf.float32, stddev = 1e-1))
 pool5, parameters = inference(images)

 init = tf.global_variables_initializer()
 sess = tf.Session()
 sess.run(init)

 time_tensorflow_run(sess, pool5, "Forward")

 objective = tf.nn.l2_loss(pool5)
 grad = tf.gradients(objective, parameters)
 time_tensorflow_run(sess, grad, "Forward-backward")


run_benchmark()

这里的代码都是之前讲过的,只是加了一个计算时间和现实网络的卷积核的函数,应该很容易就看懂了,就不多赘述了。我在GTX TITAN X上前馈大概需要0.024s, 反馈大概需要0.079s。哈哈,自己动手试一试哦。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

Tensorflow AlexNet 卷积神经网络