python

超轻量级php框架startmvc

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

更新时间:2020-08-22 12:30:01 作者:startmvc
Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自

Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器。本文假设你已经安装好了Tensorflow,了解过CNN的一些知识。

下面将分步介绍怎样获得训练数据,怎样使用tensorflow构建卷积神经网络,怎样训练,以及怎样测试训练出来的分类器

1. 准备训练样本

使用Python的库captcha来生成我们需要的训练样本,代码如下:


import sys 

import os 
import shutil 
import random 
import time 
#captcha是用于生成验证码图片的库,可以 pip install captcha 来安装它 
from captcha.image import ImageCaptcha 
 
#用于生成验证码的字符集 
CHAR_SET = ['0','1','2','3','4','5','6','7','8','9'] 
#字符集的长度 
CHAR_SET_LEN = 10 
#验证码的长度,每个验证码由4个数字组成 
CAPTCHA_LEN = 4 
 
#验证码图片的存放路径 
CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' 
#用于模型测试的验证码图片的存放路径,它里面的验证码图片作为测试集 
TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' 
#用于模型测试的验证码图片的个数,从生成的验证码图片中取出来放入测试集中 
TEST_IMAGE_NUMBER = 50 
 
#生成验证码图片,4位的十进制数字可以有10000种验证码 
def generate_captcha_image(charSet = CHAR_SET, charSetLen=CHAR_SET_LEN, captchaImgPath=CAPTCHA_IMAGE_PATH): 
 k = 0 
 total = 1 
 for i in range(CAPTCHA_LEN): 
 total *= charSetLen 
 
 for i in range(charSetLen): 
 for j in range(charSetLen): 
 for m in range(charSetLen): 
 for n in range(charSetLen): 
 captcha_text = charSet[i] + charSet[j] + charSet[m] + charSet[n] 
 image = ImageCaptcha() 
 image.write(captcha_text, captchaImgPath + captcha_text + '.jpg') 
 k += 1 
 sys.stdout.write("\rCreating %d/%d" % (k, total)) 
 sys.stdout.flush() 
 
#从验证码的图片集中取出一部分作为测试集,这些图片不参加训练,只用于模型的测试 
def prepare_test_set(): 
 fileNameList = [] 
 for filePath in os.listdir(CAPTCHA_IMAGE_PATH): 
 captcha_name = filePath.split('/')[-1] 
 fileNameList.append(captcha_name) 
 random.seed(time.time()) 
 random.shuffle(fileNameList) 
 for i in range(TEST_IMAGE_NUMBER): 
 name = fileNameList[i] 
 shutil.move(CAPTCHA_IMAGE_PATH + name, TEST_IMAGE_PATH + name) 
 
if __name__ == '__main__': 
 generate_captcha_image(CHAR_SET, CHAR_SET_LEN, CAPTCHA_IMAGE_PATH) 
 prepare_test_set() 
 sys.stdout.write("\nFinished") 
 sys.stdout.flush() 

运行上面的代码,可以生成验证码图片,

生成的验证码图片如下图所示:

2. 构建CNN,训练分类器

代码如下:


import tensorflow as tf 
import numpy as np 
from PIL import Image 
import os 
import random 
import time 
 
#验证码图片的存放路径 
CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' 
#验证码图片的宽度 
CAPTCHA_IMAGE_WIDHT = 160 
#验证码图片的高度 
CAPTCHA_IMAGE_HEIGHT = 60 
 
CHAR_SET_LEN = 10 
CAPTCHA_LEN = 4 
 
#60%的验证码图片放入训练集中 
TRAIN_IMAGE_PERCENT = 0.6 
#训练集,用于训练的验证码图片的文件名 
TRAINING_IMAGE_NAME = [] 
#验证集,用于模型验证的验证码图片的文件名 

VALIDATION_IMAGE_NAME = [] 

#存放训练好的模型的路径 
MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' 
 
def get_image_file_name(imgPath=CAPTCHA_IMAGE_PATH): 
 fileName = [] 
 total = 0 
 for filePath in os.listdir(imgPath): 
 captcha_name = filePath.split('/')[-1] 
 fileName.append(captcha_name) 
 total += 1 
 return fileName, total 
 
#将验证码转换为训练时用的标签向量,维数是 40 
#例如,如果验证码是 ‘0296' ,则对应的标签是 
# [1 0 0 0 0 0 0 0 0 0 
# 0 0 1 0 0 0 0 0 0 0 
# 0 0 0 0 0 0 0 0 0 1 
# 0 0 0 0 0 0 1 0 0 0] 
def name2label(name): 
 label = np.zeros(CAPTCHA_LEN * CHAR_SET_LEN) 
 for i, c in enumerate(name): 
 idx = i*CHAR_SET_LEN + ord(c) - ord('0') 
 label[idx] = 1 
 return label 
 
#取得验证码图片的数据以及它的标签 
def get_data_and_label(fileName, filePath=CAPTCHA_IMAGE_PATH): 
 pathName = os.path.join(filePath, fileName) 
 img = Image.open(pathName) 
 #转为灰度图 
 img = img.convert("L") 
 image_array = np.array(img) 
 image_data = image_array.flatten()/255 
 image_label = name2label(fileName[0:CAPTCHA_LEN]) 
 return image_data, image_label 
 
#生成一个训练batch 
def get_next_batch(batchSize=32, trainOrTest='train', step=0): 
 batch_data = np.zeros([batchSize, CAPTCHA_IMAGE_WIDHT*CAPTCHA_IMAGE_HEIGHT]) 
 batch_label = np.zeros([batchSize, CAPTCHA_LEN * CHAR_SET_LEN]) 
 fileNameList = TRAINING_IMAGE_NAME 
 if trainOrTest == 'validate': 
 fileNameList = VALIDATION_IMAGE_NAME 
 
 totalNumber = len(fileNameList) 
 indexStart = step*batchSize 
 for i in range(batchSize): 
 index = (i + indexStart) % totalNumber 
 name = fileNameList[index] 
 img_data, img_label = get_data_and_label(name) 
 batch_data[i, : ] = img_data 
 batch_label[i, : ] = img_label 
 
 return batch_data, batch_label 
 
#构建卷积神经网络并训练 
def train_data_with_CNN(): 
 #初始化权值 
 def weight_variable(shape, name='weight'): 
 init = tf.truncated_normal(shape, stddev=0.1) 
 var = tf.Variable(initial_value=init, name=name) 
 return var 
 #初始化偏置 
 def bias_variable(shape, name='bias'): 
 init = tf.constant(0.1, shape=shape) 
 var = tf.Variable(init, name=name) 
 return var 
 #卷积 
 def conv2d(x, W, name='conv2d'): 
 return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME', name=name) 
 #池化 
 def max_pool_2X2(x, name='maxpool'): 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name=name) 
 
 #输入层 
 #请注意 X 的 name,在测试model时会用到它 
 X = tf.placeholder(tf.float32, [None, CAPTCHA_IMAGE_WIDHT * CAPTCHA_IMAGE_HEIGHT], name='data-input') 
 Y = tf.placeholder(tf.float32, [None, CAPTCHA_LEN * CHAR_SET_LEN], name='label-input') 
 x_input = tf.reshape(X, [-1, CAPTCHA_IMAGE_HEIGHT, CAPTCHA_IMAGE_WIDHT, 1], name='x-input') 
 #dropout,防止过拟合 
 #请注意 keep_prob 的 name,在测试model时会用到它 
 keep_prob = tf.placeholder(tf.float32, name='keep-prob') 
 #第一层卷积 
 W_conv1 = weight_variable([5,5,1,32], 'W_conv1') 
 B_conv1 = bias_variable([32], 'B_conv1') 
 conv1 = tf.nn.relu(conv2d(x_input, W_conv1, 'conv1') + B_conv1) 
 conv1 = max_pool_2X2(conv1, 'conv1-pool') 
 conv1 = tf.nn.dropout(conv1, keep_prob) 
 #第二层卷积 
 W_conv2 = weight_variable([5,5,32,64], 'W_conv2') 
 B_conv2 = bias_variable([64], 'B_conv2') 
 conv2 = tf.nn.relu(conv2d(conv1, W_conv2,'conv2') + B_conv2) 
 conv2 = max_pool_2X2(conv2, 'conv2-pool') 
 conv2 = tf.nn.dropout(conv2, keep_prob) 
 #第三层卷积 
 W_conv3 = weight_variable([5,5,64,64], 'W_conv3') 
 B_conv3 = bias_variable([64], 'B_conv3') 
 conv3 = tf.nn.relu(conv2d(conv2, W_conv3, 'conv3') + B_conv3) 
 conv3 = max_pool_2X2(conv3, 'conv3-pool') 
 conv3 = tf.nn.dropout(conv3, keep_prob) 
 #全链接层 
 #每次池化后,图片的宽度和高度均缩小为原来的一半,进过上面的三次池化,宽度和高度均缩小8倍 
 W_fc1 = weight_variable([20*8*64, 1024], 'W_fc1') 
 B_fc1 = bias_variable([1024], 'B_fc1') 
 fc1 = tf.reshape(conv3, [-1, 20*8*64]) 
 fc1 = tf.nn.relu(tf.add(tf.matmul(fc1, W_fc1), B_fc1)) 
 fc1 = tf.nn.dropout(fc1, keep_prob) 
 #输出层 
 W_fc2 = weight_variable([1024, CAPTCHA_LEN * CHAR_SET_LEN], 'W_fc2') 
 B_fc2 = bias_variable([CAPTCHA_LEN * CHAR_SET_LEN], 'B_fc2') 
 output = tf.add(tf.matmul(fc1, W_fc2), B_fc2, 'output') 
 
 loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output)) 
 optimizer = tf.train.AdamOptimizer(0.001).minimize(loss) 
 
 predict = tf.reshape(output, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='predict') 
 labels = tf.reshape(Y, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='labels') 
 #预测结果 
 #请注意 predict_max_idx 的 name,在测试model时会用到它 
 predict_max_idx = tf.argmax(predict, axis=2, name='predict_max_idx') 
 labels_max_idx = tf.argmax(labels, axis=2, name='labels_max_idx') 
 predict_correct_vec = tf.equal(predict_max_idx, labels_max_idx) 
 accuracy = tf.reduce_mean(tf.cast(predict_correct_vec, tf.float32)) 
 
 saver = tf.train.Saver() 
 with tf.Session() as sess: 
 sess.run(tf.global_variables_initializer()) 
 steps = 0 
 for epoch in range(6000): 
 train_data, train_label = get_next_batch(64, 'train', steps) 
 sess.run(optimizer, feed_dict={X : train_data, Y : train_label, keep_prob:0.75}) 
 if steps % 100 == 0: 
 test_data, test_label = get_next_batch(100, 'validate', steps) 
 acc = sess.run(accuracy, feed_dict={X : test_data, Y : test_label, keep_prob:1.0}) 
 print("steps=%d, accuracy=%f" % (steps, acc)) 
 if acc > 0.99: 
 saver.save(sess, MODEL_SAVE_PATH+"crack_captcha.model", global_step=steps) 
 break 
 steps += 1 
 
if __name__ == '__main__': 
 image_filename_list, total = get_image_file_name(CAPTCHA_IMAGE_PATH) 
 random.seed(time.time()) 
 #打乱顺序 
 random.shuffle(image_filename_list) 
 trainImageNumber = int(total * TRAIN_IMAGE_PERCENT) 
 #分成测试集 
 TRAINING_IMAGE_NAME = image_filename_list[ : trainImageNumber] 
 #和验证集 
 VALIDATION_IMAGE_NAME = image_filename_list[trainImageNumber : ] 
 train_data_with_CNN() 
 print('Training finished') 

运行上面的代码,开始训练,训练要花些时间,如果没有GPU的话,会慢些,

训练完后,输出如下结果,经过4100次的迭代,训练出来的分类器模型在验证集上识别的准确率为99.5%

生成的模型文件如下,在模型测试时将用到这些文件

3. 测试模型

编写代码,对训练出来的模型进行测试


import tensorflow as tf 

import numpy as np 
from PIL import Image 
import os 
import matplotlib.pyplot as plt 
 
CAPTCHA_LEN = 4 
 
MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' 
TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' 
 
def get_image_data_and_name(fileName, filePath=TEST_IMAGE_PATH): 
 pathName = os.path.join(filePath, fileName) 
 img = Image.open(pathName) 
 #转为灰度图 
 img = img.convert("L") 
 image_array = np.array(img) 
 image_data = image_array.flatten()/255 
 image_name = fileName[0:CAPTCHA_LEN] 
 return image_data, image_name 
 
def digitalStr2Array(digitalStr): 
 digitalList = [] 
 for c in digitalStr: 
 digitalList.append(ord(c) - ord('0')) 
 return np.array(digitalList) 
 
def model_test(): 
 nameList = [] 
 for pathName in os.listdir(TEST_IMAGE_PATH): 
 nameList.append(pathName.split('/')[-1]) 
 totalNumber = len(nameList) 
 #加载graph 
 saver = tf.train.import_meta_graph(MODEL_SAVE_PATH+"crack_captcha.model-4100.meta") 
 graph = tf.get_default_graph() 
 #从graph取得 tensor,他们的name是在构建graph时定义的(查看上面第2步里的代码) 
 input_holder = graph.get_tensor_by_name("data-input:0") 
 keep_prob_holder = graph.get_tensor_by_name("keep-prob:0") 
 predict_max_idx = graph.get_tensor_by_name("predict_max_idx:0") 
 with tf.Session() as sess: 
 saver.restore(sess, tf.train.latest_checkpoint(MODEL_SAVE_PATH)) 
 count = 0 
 for fileName in nameList: 
 img_data, img_name = get_image_data_and_name(fileName, TEST_IMAGE_PATH) 
 predict = sess.run(predict_max_idx, feed_dict={input_holder:[img_data], keep_prob_holder : 1.0}) 
 filePathName = TEST_IMAGE_PATH + fileName 
 print(filePathName) 
 img = Image.open(filePathName) 
 plt.imshow(img) 
 plt.axis('off') 
 plt.show() 
 predictValue = np.squeeze(predict) 
 rightValue = digitalStr2Array(img_name) 
 if np.array_equal(predictValue, rightValue): 
 result = '正确' 
 count += 1 
 else: 
 result = '错误' 
 print('实际值:{}, 预测值:{},测试结果:{}'.format(rightValue, predictValue, result)) 
 print('\n') 
 
 print('正确率:%.2f%%(%d/%d)' % (count*100/totalNumber, count, totalNumber)) 
 
if __name__ == '__main__': 
 model_test() 

对模型的测试结果如下,在测试集上识别的准确率为 94%

下面是两个识别错误的验证码

以上这篇利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Tensorflow CNN 验证码